Article

RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels.

Department of Biological Sciences, Fairchild Center, 1212 Amsterdam Avenue, MC 2406, New York, New York 10027, USA.
Nature (Impact Factor: 38.6). 07/2007; 447(7146):864-8. DOI: 10.1038/nature05859
Source: PubMed

ABSTRACT Therapeutics that discriminate between the genetic makeup of normal cells and tumour cells are valuable for treating and understanding cancer. Small molecules with oncogene-selective lethality may reveal novel functions of oncoproteins and enable the creation of more selective drugs. Here we describe the mechanism of action of the selective anti-tumour agent erastin, involving the RAS-RAF-MEK signalling pathway functioning in cell proliferation, differentiation and survival. Erastin exhibits greater lethality in human tumour cells harbouring mutations in the oncogenes HRAS, KRAS or BRAF. Using affinity purification and mass spectrometry, we discovered that erastin acts through mitochondrial voltage-dependent anion channels (VDACs)--a novel target for anti-cancer drugs. We show that erastin treatment of cells harbouring oncogenic RAS causes the appearance of oxidative species and subsequent death through an oxidative, non-apoptotic mechanism. RNA-interference-mediated knockdown of VDAC2 or VDAC3 caused resistance to erastin, implicating these two VDAC isoforms in the mechanism of action of erastin. Moreover, using purified mitochondria expressing a single VDAC isoform, we found that erastin alters the permeability of the outer mitochondrial membrane. Finally, using a radiolabelled analogue and a filter-binding assay, we show that erastin binds directly to VDAC2. These results demonstrate that ligands to VDAC proteins can induce non-apoptotic cell death selectively in some tumour cells harbouring activating mutations in the RAS-RAF-MEK pathway.

0 Bookmarks
 · 
256 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ferroptosis is a form of nonapoptotic cell death for which key regulators remain unknown. We sought a common mediator for the lethality of 12 ferroptosis-inducing small molecules. We used targeted metabolomic profiling to discover that depletion of glutathione causes inactivation of glutathione peroxidases (GPXs) in response to one class of compounds and a chemoproteomics strategy to discover that GPX4 is directly inhibited by a second class of compounds. GPX4 overexpression and knockdown modulated the lethality of 12 ferroptosis inducers, but not of 11 compounds with other lethal mechanisms. In addition, two representative ferroptosis inducers prevented tumor growth in xenograft mouse tumor models. Sensitivity profiling in 177 cancer cell lines revealed that diffuse large B cell lymphomas and renal cell carcinomas are particularly susceptible to GPX4-regulated ferroptosis. Thus, GPX4 is an essential regulator of ferroptotic cancer cell death.
    Cell 01/2014; 156(1-2):317-31. · 31.96 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The simplest mechanism of the generation of the mitochondrial outer membrane potential (OMP) by the VDAC (voltage-dependent anion channel)-hexokinase complex (VHC), suggested earlier, and by the VDAC-glucokinase complex (VGC), was computationally analyzed. Even at less than 4 % of VDACs bound to hexokinase, the calculated OMP is high enough to trigger the electrical closure of VDACs beyond the complexes at threshold concentrations of glucose. These results confirmed our previous hypothesis that the Warburg effect is caused by the electrical closure of VDACs, leading to global restriction of the outer membrane permeability coupled to aerobic glycolysis. The model showed that the inhibition of the conductance and/or an increase in the voltage sensitivity of a relatively small fraction of VDACs by factors like tubulin potentiate the electrical closure of the remaining free VDACs. The extrusion of calcium ions from the mitochondrial intermembrane space by the generated OMP, positive inside, might increase cancer cell resistance to death. Within the VGC model, the known effect of induction of ATP release from mitochondria by accumulated glucose-6-phosphate in pancreatic beta cells might result not only of the known effect of GK dissociation from the VDAC-GK complex, but also of a decrease in the free energy of glucokinase reaction, leading to the OMP decrease and VDAC opening. We suggest that the VDAC-mediated electrical control of the mitochondrial outer membrane permeability, dependent on metabolic conditions, is a fundamental physiological mechanism of global regulation of mitochondrial functions and of cell death.
    Biochimica et Biophysica Acta 01/2014; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondria, the key bioenergetic intracellular organelles, harbor a number of proteins with proven or hypothetical ion channel functions. Growing evidence points to the important contribution of these channels to the regulation of mitochondrial function, such as ion homeostasis imbalances profoundly affecting energy transducing processes, reactive oxygen species production and mitochondrial integrity. Given the central role of mitochondria in apoptosis, their ion channels with the potential to compromise mitochondrial function have become promising targets for the treatment of malignancies. Importantly, in vivo evidence demonstrates the involvement of the proton-transporting uncoupling protein, a mitochondrial potassium channel, the outer membrane located porin and the permeability transition pore in tumor progression/control. In this review, we focus on mitochondrial channels that have been assigned a definite role in cell death regulation and possess clear oncological relevance. Overall, based on in vivo and in vitro genetic and pharmacological evidence, mitochondrial ion channels are emerging as promising targets for cancer treatment.Oncogene advance online publication, 27 January 2014; doi:10.1038/onc.2013.578.
    Oncogene 01/2014; · 8.56 Impact Factor

Full-text

View
47 Downloads
Available from
May 21, 2014