Article

Malignant gliomas actively recruit bone marrow stromal cells by secreting angiogenic cytokines.

Department of Neurology, Ludwig-Maximilians-University, Klinikum Grosshadern, Marchioninistr. 15, 81377 Munich, Germany.
Journal of Neuro-Oncology (Impact Factor: 2.79). 08/2007; 83(3):241-7. DOI: 10.1007/s11060-007-9332-4
Source: PubMed

ABSTRACT The transplantation of progenitor cells is a promising new approach for the treatment of gliomas. Marrow stromal cells (MSC) are possible candidates for such a cell-based therapy, since they are readily and autologously available and show an extensive tropism to gliomas in vitro and in vivo. However, the signals that guide the MSC are still poorly understood. In this study, we show that gliomas have the capacity to actively attract MSC by secreting a multitude of angiogenic cytokines. We demonstrate that interleukin-8 (IL-8), transforming growth factor-ss1 (TGF-ss1) and neurotrophin-3 (NT-3) contribute to this glioma-directed tropism of human MSC. Together with the finding that vascular endothelial growth factor (VEGF) is another MSC-attracting factor secreted by glioma cells, these data support the hypothesis that gliomas use their angiogenic pathways to recruit mesenchymal progenitor cells.

0 Bookmarks
 · 
117 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies indicated that bone marrow mesenchymal stem cells (BM-MSCs) derived from multiple myeloma (MM) patients were different from those of normal subjects in a variety of aspects. However, it is largely unknown whether BM-MSCs derived from MM patients display any aberrant chemotactic migration. To this aim, we compared the chemotactic migration of BM-MSCs derived from MM patients with those from normal subjects. Our results showed that BM-MSCs derived from MM patients migrated more vigorously to myeloma cell line. Furthermore, proteasome inhibitor bortezomib was showed to suppress chemotactic migration of BM-MSCs whatever their origins. However, although the chemotactic migration of BM-MSCs derived from MM patients to myeloma cell line was more significantly suppressed by bortezomib treatment, migration to SDF-1 or FBS of BM-MSCs was less compromised. Both SDF-1 and TNF-α enhanced phosphorylation of iκ-Bα in BM-MSCs. Although bortezomib significantly inhibited the iκ-Bα phosphorylation by SDF-1, it had little effect on iκ-Bα phosphorylation by TNF-α. Collectively, our results suggested that aberrant chemotactic migration of BM-MSCs derived from MM patients and the possible migration-regulatory role of bortezomib treatment.
    International journal of clinical and experimental pathology. 01/2014; 7(10):6705-15.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: http://www.ncbi.nlm.nih.gov/pubmed/25258664 World J Stem Cells 2014 September 26; 6(4): 432-440 The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. *** http://www.ncbi.nlm.nih.gov/pubmed/25258664 World J Stem Cells. 2014 Sep 26;6(4):432-40. doi: 10.4252/wjsc.v6.i4.432. Training stem cells for treatment of malignant brain tumors. Li SC, Kabeer MH, Vu LT, Keschrumrus V, Yin HZ, Dethlefs BA, Zhong JF, Weiss JH, Loudon WG. Author information Shengwen Calvin Li, Mustafa H Kabeer, Long T Vu, Vic Keschrumrus, Brent A Dethlefs, William G Loudon, Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, Children's Hospital of Orange County, University of California-Irvine, Orange, CA 92868, United States. Abstract The treatment of malignant brain tumors remains a challenge. Stem cell technology has been applied in the treatment of brain tumors largely because of the ability of some stem cells to infiltrate into regions within the brain where tumor cells migrate as shown in preclinical studies. However, not all of these efforts can translate in the effective treatment that improves the quality of life for patients. Here, we perform a literature review to identify the problems in the field. Given the lack of efficacy of most stem cell-based agents used in the treatment of malignant brain tumors, we found that stem cell distribution (i.e., only a fraction of stem cells applied capable of targeting tumors) are among the limiting factors. We provide guidelines for potential improvements in stem cell distribution. Specifically, we use an engineered tissue graft platform that replicates the in vivo microenvironment, and provide our data to validate that this culture platform is viable for producing stem cells that have better stem cell distribution than with the Petri dish culture system. KEYWORDS: Engineered tissue graft; Malignant brain tumors; Organotypic slice model; Stem cells PMID: 25258664 [PubMed] PMCID: PMC4172671 Share on Facebook Share on Twitter Share on Google+
    World J Stem Cells 2014 September 26; 6(4): 432-440. 09/2014; 6(4):432-440.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years the knowledge about the control of tumor microenvironment has increased and emerged as an important player in tumorigenesis. The role of normal stromal cells in the tumor initiation and progression has brought our vision in to the forefront of cell-to-cell communication. In this review, we focus on the mechanism of communication between stromal and tumor cells, which is based on the exchange of extracellular vesicles. We describe several, ever-growing, pieces of evidence that extracellular vesicles transfer messages through their miRNA, lipid, protein and nucleic acid contents. A better understanding of this sophisticated method of communication between normal cancer cells may lead to developing novel approaches for personalized diagnostics and therapeutics. This article is protected by copyright. All rights reserved.
    International Journal of Cancer 01/2015; · 6.20 Impact Factor

Full-text (2 Sources)

Download
161 Downloads
Available from
Jun 4, 2014