Phosphoproteomics identified Endofin, DCBLD2, and KIAA0582 as novel tyrosine phosphorylation targets of EGF signaling and Iressa in human cancer cells

Oncology Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
PROTEOMICS (Impact Factor: 3.97). 07/2007; 7(14):2384-97. DOI: 10.1002/pmic.200600968
Source: PubMed

ABSTRACT With the completion of the human genome project, analysis of enriched phosphotyrosyl proteins from epidermal growth factor (EGF)-induced phosphotyrosine proteome permits the identification of novel downstream substrates of the EGF receptor (EGFR). Using cICAT-based LC-MS/MS method, we identified and relatively quantified the tyrosine phosphorylation levels of 21 proteins between control and EGF-treated A431 human cervical cancer cells. Of these, Endofin, DCBLD2, and KIAA0582 were validated to be novel tyrosine-phosphorylation targets of EGF signaling and Iressa, a highly selective inhibitor of EGFR. In addition, EGFR activity was shown to be necessary for EGF-induced localization of Endofin, an FYVE domain-containing protein regulated by phosphoinositol lipid and engaged in endosome-mediated receptor modulation. Although several groups have conducted phosphoproteomics of EGF signaling in recent years, our study is the first to identify and validate Endofin, DCBLD2, and KIAA0582 as part of a complex EGF phosphotyrosine signaling network. These novel data will provide new insights into the complex EGF signaling and may have implications on target-directed cancer therapeutics.

Download full-text


Available from: Teck Yew Low, Jun 18, 2015
1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: Centrosome cohesion maintains centrosomes in close proximity until mitosis, when cell cycle-dependent regulatory signaling events dissolve cohesion and promote centrosome separation in preparation for bipolar spindle assembly at mitosis. Cohesion is regulated by the antagonistic activities of the mitotic NIMA-related kinase 2 (Nek2), protein phosphatase 1, the cohesion fiber components rootletin, centrosomal Nek2-associated protein 1 (C-Nap1) and Cep68. The centrosomal protein Cep68 is essential for centrosome cohesion and dissociates from centrosomes at the onset of mitosis. Here, our cell line studies show the C-terminal 300-400 amino acids of Cep68 are necessary to localize Cep68 to interphase centrosomes while C-terminal 400-500 amino acids might regulate Cep68 dissociation from centrosomes at mitotic onset. In addition, Nek2 was demonstrated to phosphorylate Cep68 in vivo and this phosphorylation appears to promote Cep68 degradation in mitosis. We further show that the SCF complex destroys Cep68 at mitosis through recognition by the beta-Trcp F box component of SCF. Together, the findings provide a new insight into the control of centrosome separation by Cep68 during mitosis. Copyright © 2015 Elsevier GmbH. All rights reserved.
    European Journal of Cell Biology 02/2015; 426(3-4). DOI:10.1016/j.ejcb.2015.01.004 · 3.70 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteomic approaches are continuing to make headways in cancer research by helping to elucidate complex signaling networks that underlie tumorigenesis and disease progression. This review describes recent advances made in the proteomic discovery of drug targets for therapeutic development. A variety of technical and methodological advances are overviewed with a critical assessment of challenges and potentials. A number of potential drug targets, such as baculoviral inhibitor of apoptosis protein repeat-containing protein 6, macrophage inhibitory cytokine 1, phosphoglycerate mutase 1, prohibitin 1, fascin, and pyruvate kinase isozyme 2 were identified in the proteomic analysis of drug-resistant cancer cells, drug action, and differential disease state tissues. Future directions for proteomics-based target identification and validation to be more translation efficient are also discussed.
    Drug Design, Development and Therapy 10/2013; 7:1259-1271. DOI:10.2147/DDDT.S52216 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have used stable isotope labeling by amino acids in cell culture (SILAC), in combination with high-resolution mass spectrometry, to identify common and discrete components of the respective receptor tyrosine kinase-dependent phosphotyrosine-associated networks induced by acute stimulation of A549 lung adenocarcinoma cells with EGF or HGF. In total, we obtained quantitative information for 274 proteins, which respond to either or both stimuli by >1.5 fold changes in enrichment, following immuno-precipitation with antiphosphotyrosine antibodies. The data reveal a high degree of overlap between the respective signaling networks but also clear points of departure. A small number of HGF specific effectors were identified including myosin-X, galectin-1, ELMO2 and EphrinB1, while a larger set of EGF specific effectors (39 proteins) includes both novel (e.g., MAP4K3) and established components of receptor tyrosine kinase receptor signaling pathways. Using available protein-interaction data the identified proteins have been assembled into a highly connected network that can be visualized using the Cytoscape tool.
    Journal of Proteome Research 03/2010; 9(5):2734-42. DOI:10.1021/pr100145w · 5.00 Impact Factor