Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR.

Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2004; 101(10):3409-13. DOI: 10.1073/pnas.0308713101
Source: PubMed

ABSTRACT G protein-coupled receptors are cell-surface seven-helical membrane proteins that undergo conformational changes on activation. The mammalian photoreceptor, rhodopsin, is the best-studied member of this superfamily. Here, we provide the first evidence that activation in rhodopsin may involve differential dynamic properties of side-chain versus backbone atoms. High-resolution NMR studies of alpha-(15)N-labeled receptor revealed large backbone motions in the inactive dark state. In contrast, indole side-chain (15)N groups of tryptophans showed well resolved, equally intense NMR signals, suggesting restriction to a single specific conformation.

Download full-text


Available from: Naveena Yanamala, Mar 12, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: NMR spectroscopic characterization of the structure or the dynamics of proteins generally requires the production of samples isotopically enriched in 15N, 13C, or 2H. The bacterial expression systems currently in use to obtain isotopic enrichment, however, cannot produce a number of eukaryotic proteins, especially those that require post-translational modifications such as N-linked glycosylation for proper folding or activity. Here, we report the use of an adenovirus vector-based mammalian expression system to produce isotopically enriched 15N or 15N/13C samples of an outer domain variant of the HIV-1 gp120 envelope glycoprotein with 15 sites of N-linked glycosylation. Yields for the 15N- and 15N/13C-labeled gp120s after affinity chromatography were 45 and 44 mg/l, respectively, with an average of over 80% isotope incorporation. Recognition of the labeled gp120 by cognate antibodies that recognize complex epitopes showed affinities comparable to the unlabeled protein. NMR spectra, including 1H-15N and 1H-13C HSQCs, 15N-edited NOESY-HSQC, and 3D HNCO, were of high quality, with signal-to-noise consistent with an efficient level of isotope incorporation, and with chemical shift dispersion indicative of a well-folded protein. The exceptional protein yields, good isotope incorporation, and ability to obtain well-folded post-translationally modified proteins make this mammalian system attractive for the production of isotopically enriched eukaryotic proteins for NMR spectroscopy. Electronic supplementary material The online version of this article (doi:10.1007/s10858-011-9506-4) contains supplementary material, which is available to authorized users.
    Journal of Biomolecular NMR 06/2011; 50(3):197-207. DOI:10.1007/s10858-011-9506-4 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Little direct information is available regarding the influence of membrane environment on transmembrane (TM) G-protein-coupled receptor (GPCR) conformation and dynamics. The human CB1 cannabinoid receptor (hCB1) is a prominent GPCR pharmacotherapeutic target in which helix 7 appears critical to ligand recognition. We have chemically synthesized a hCB1 peptide corresponding to a segment of TM helix 7 and the entire contiguous helix 8 domain (fourth cytoplasmic loop) and reconstituted it in defined phospholipid-bilayer model membranes. Using an NMR-based strategy combined with molecular dynamics simulations, we provide the first direct experimental description of the orientation of hCB1 helix 7 in phospholipid membranes of varying thickness and the mechanism by which helix-7 conformation adjusts to avoid hydrophobic mismatch. Solid-state 15N NMR data show that hCB1 helices 7 and 8 reconstituted into phospholipid bilayers are oriented in a TM and in-plane (i.e., parallel to the phospholipid membrane surface) fashion, respectively. TM helix orientation is influenced by the thickness of the hydrophobic membrane bilayer as well as the interaction of helix 8 with phospholipid polar headgroups. Molecular dynamics simulations show that a decrease in phospholipid chain-length induces a kink at P394 in TM helix 7 to avoid hydrophobic mismatch. Thus, the NP(X)nY motif found in hCB1 and highly conserved throughout the GPCR superfamily is important for flexing helix 7 to accommodate bilayer thickness. Dynamic modulation of hCB1-receptor TM helix conformation by its membrane environment may have general relevance to GPCR structure and function.
    Biochimica et Biophysica Acta 05/2009; 1788(5-1788):1159-1167. DOI:10.1016/j.bbamem.2009.02.002 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane proteins are key targets for pharmacological intervention because they are vital for cellular function. Here, we analyze recent progress made in the understanding of the structure and function of membrane proteins with a focus on rhodopsin and development of atomic force microscopy techniques to study biological membranes. Membrane proteins are compartmentalized to carry out extra- and intracellular processes. Biological membranes are densely populated with membrane proteins that occupy approximately 50% of their volume. In most cases membranes contain lipid rafts, protein patches, or paracrystalline formations that lack the higher-order symmetry that would allow them to be characterized by diffraction methods. Despite many technical difficulties, several crystal structures of membrane proteins that illustrate their internal structural organization have been determined. Moreover, high-resolution atomic force microscopy, near-field scanning optical microscopy, and other lower resolution techniques have been used to investigate these structures. Single-molecule force spectroscopy tracks interactions that stabilize membrane proteins and those that switch their functional state; this spectroscopy can be applied to locate a ligand-binding site. Recent development of this technique also reveals the energy landscape of a membrane protein, defining its folding, reaction pathways, and kinetics. Future development and application of novel approaches during the coming years should provide even greater insights to the understanding of biological membrane organization and function.
    Pharmacological reviews 04/2008; 60(1):43-78. DOI:10.1124/pr.107.07111 · 18.55 Impact Factor