Article

Entamoeba histolytica: ouabain-insensitive Na(+)-ATPase activity.

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-902 Rio de Janeiro, RJ, Brazil.
Experimental Parasitology (Impact Factor: 1.86). 11/2007; 117(2):195-200. DOI: 10.1016/j.exppara.2007.04.010
Source: PubMed

ABSTRACT Our aim was to determine the presence of sodium pumps in Entamoeba histolytica. It is shown through the measurement of ouabain-sensitive ATPase activity and immunoblotting that E. histolytica does not express (Na(+)+K(+))ATPase. On the other hand, we observed a Na(+)-ATPase with the following characteristics: (1) stimulated by Na(+) or K(+), but these effects are not addictive; (2) the apparent affinity is similar for Na(+) and K(+) (K(0.5) = 13.3 +/- 3.7 and 15.4 +/- 3.1mM, respectively), as well as the V(max) (24.9 +/- 1.5 or 27.5 +/- 1.6 nmol Pi mg(-1)min(-1), respectively); (3) insensitive up to 2mM ouabain; and (4) inhibited by furosemide with an IC(50) of 0.12 +/- 0.004 mM. Furthermore, this enzyme forms a Na(+)- or K(+)-stimulated, furosemide- and hydroxylamine-sensitive ATP-driven acylphosphate phosphorylated intermediate.

0 Followers
 · 
312 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The malaria parasite Plasmodium falciparum establishes in the host erythrocyte plasma membrane new permeability pathways that mediate nutrient uptake into the infected cell. These pathways simultaneously allow Na(+) influx, causing [Na(+)] in the infected erythrocyte cytosol to increase to high levels. The intraerythrocytic parasite itself maintains a low cytosolic [Na(+)] via unknown mechanisms. Here we present evidence that the intraerythrocytic parasite actively extrudes Na(+) against an inward gradient via PfATP4, a parasite plasma membrane protein with sequence similarities to Na(+)-ATPases of lower eukaryotes. Mutations in PfATP4 confer resistance to a potent class of antimalarials, the spiroindolones. Consistent with this, the spiroindolones cause a profound disruption in parasite Na(+) homeostasis, which is attenuated in parasites bearing resistance-conferring mutations in PfATP4. The mutant parasites also show some impairment of Na(+) regulation. Taken together, our results are consistent with PfATP4 being a Na(+) efflux ATPase and a target of the spiroindolones.
    Cell host & microbe 02/2013; 13(2):227-37. DOI:10.1016/j.chom.2012.12.006 · 12.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Miltefosine has been shown to be a very active compound against Trypanosoma cruzi. Here, we evaluated the effects of miltefosine on the activity of the Na(+)-ATPase and protein kinase C (PKC) present in the plasma membrane of T. cruzi. Furosemide (2mM), a specific inhibitor of Na(+)-ATPase, abolished the growth of T. cruzi showing a crucial role of this enzyme to parasite growth. Miltefosine inhibited the Na(+)-ATPase activity with IC(50)=18+/-5 microg mL(-1). This effect was shown to be reversible, dependent on the pH and Ca(2+). The inhibition was not observed when the membranes were solubilized with 0.1% deoxycholate, suggesting that the interaction between the enzyme and membrane phospholipids might be important for the drug effect. Miltefosine also inhibited the parasite PKC activity, but through a Na(+)-ATPase-independent way. Altogether the results indicate that miltefosine inhibits T. cruzi growth through, at least in part, the inhibition of both Na(+)-ATPase and PKC activities.
    Archives of Biochemistry and Biophysics 11/2008; 481(1):65-71. DOI:10.1016/j.abb.2008.10.018 · 3.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The K(+) and Na(+) concentrations in living cells are strictly regulated at almost constant concentrations, high for K(+) and low for Na(+). Because these concentrations correspond to influx-efflux steady states, K(+) and Na(+) effluxes and the transporters involved play a central role in the physiology of cells, especially in environments with high Na(+) concentrations where a high Na(+) influx may be the rule. In eukaryotic cells two P-type ATPases are crucial in these homeostatic processes, the Na,K-ATPase of animal cells and the H(+)-ATPase of fungi and plants. In fungi, a third P-type ATPase, the ENA ATPase, was discovered nineteen years ago. Although for many years it was considered to be exclusively a fungal enzyme, it is now known to be present in bryophytes and protozoa. Structurally, the ENA (from exitus natru: exit of sodium) ATPase is very similar to the sarco/endoplasmic reticulum Ca(2+) (SERCA) ATPase, and it probably exchanges Na(+) (or K(+)) for H(+). The same exchange is mediated by Na(+) (or K(+))/H(+) antiporters. However, in eukaryotic cells these antiporters are electroneutral and their function depends on a DeltapH across the plasma membrane. Therefore, the current notion is that the ENA ATPase is necessary at high external pH values, where the antiporters cannot mediate uphill Na(+) efflux. This occurs in some fungal environments and at some points of protozoa parasitic cycles, which makes the ENA ATPase a possible target for controlling fungal and protozoan parasites. Another technological application of the ENA ATPase is the improvement of salt tolerance in flowering plants.
    Biochimica et Biophysica Acta 10/2010; 1798(10):1841-53. DOI:10.1016/j.bbamem.2010.07.009 · 4.66 Impact Factor