Article

Adipokine gene expression in a novel hypothalamic neuronal cell line: resistin-dependent regulation of fasting-induced adipose factor and SOCS-3.

Department of Obstetrics, Faculty of Medicine, Dalhousie University, Halifax, N.S., Canada.
Neuroendocrinology (Impact Factor: 4.93). 02/2007; 85(4):232-41. DOI: 10.1159/000104248
Source: PubMed

ABSTRACT Adipokines such as leptin, resistin, and fasting-induced adipose factor (FIAF) are secreted by adipocytes, but their expression is also detectable in the brain and pituitary. The role of central adipokines remains elusive, but we speculate that they may modulate those hypothalamic signaling pathways that control energy homeostasis. Here we describe experiments to test this in which we exploited a novel hypothalamic neuronal cell line (N-1) that expresses a variety of neuropeptides and receptors that are known to be implicated in appetite regulation. Using real-time RT-PCR, we confirmed that N-1 neurons express resistin (rstn) and fiaf, as well as suppressor of cytokine signaling-3 (socs-3), a feedback inhibitor of leptin signaling. Treating N-1 cells with recombinant resistin (200 ng/ml, 30 min) reduced both fiaf (25%, p < 0.005) and socs-3 (29%, p < 0.005) mRNA levels, and similar reductions in fiaf (40%, p < 0.001) and socs-3 (25%, p < 0.001) resulted following the overexpression of resistin. Conversely, when RNA interference (RNAi) was used to reduce endogenous rstn levels (-60%, p < 0.005), fiaf and socs-3 expression was increased (46 and 65% respectively, p < 0.005). A similar reduction in rstn mRNA was achieved using RNAi in differentiated 3T3-L1 adipocytes, and this manipulation also reduced fiaf and socs-3 expression (-53, -21 and -20% respectively, p < 0.005). In contrast, although RNAi successfully reduced fiaf mRNA by 50% (p < 0.001) in N-1 cells and 40% (p < 0.001) in 3T3-L1 cells, there was no effect on rstn or socs-3 mRNA. These data suggest that resistin exerts a novel autocrine/paracrine control over fiaf and socs-3 expression in both 3T3-L1 adipocytes and N-1 neurons. Such a mechanism could be part of the central feedback system that modulates the effects of adipokines, and other adiposity signals, implicated in hypothalamic energy homeostasis. However, it remains to be determined whether these in vitro results can be translated to the control of adipokine expression in brain and adipose tissue.

0 Followers
 · 
100 Views
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: The brain has been recognized as a prominent site of peptide biosynthesis for more than 30 years, and many neuropeptides are now known to be common to gut and brain. With these precedents in mind it is remarkable that adipose-derived peptides like leptin have attracted minimal attention as brain-derived putative neuromodulators of energy balance. This review outlines the evidence that several adipose-specific genes are also expressed in the central nervous system and pituitary gland. We, and others, confirmed that the genes for leptin, resistin, adiponectin, FIAF (fasting-induced adipose factor) and adiponutrin are expressed and regulated in these tissues. For example, leptin mRNA was readily detectable in human, rat, sheep and pig brain, but not in the mouse. Leptin expression in rat brain and pituitary was regulated through development, by food restriction, and following traumatic brain injury. In contrast, hypothalamic resistin mRNA was unaffected by age or by fasting, but was significantly depleted by food restriction in mouse pituitary gland. Similar results were seen in the ob/ob mouse, and we noted a marked reduction in resistin-positive hypothalamic nerve fibres. Resistin and fiaf mRNA were also upregulated in hypoxic/ischaemic mouse brain. Our studies on the regulation of neuronal adipokines were greatly aided by the availability of clonal hypothalamic neuronal cell lines. One of these, N-1, expresses both rstn and fiaf together with several other neuropeptides and receptors involved in energy homeostasis. Selective silencing of rstn revealed an autocrine/paracrine regulatory system, mediated through socs-3 expression that may influence the feedback effects of insulin and leptin in vivo. A similar convergence of signals in the pituitary gland could also influence anterior pituitary hormone secretion. In conclusion, the evidence is suggestive that brain and pituitary-derived adipokines represent a local regulatory circuit that may fine tune the feedback effects of adipose hormones in the control of energy balance.
    Neuroendocrinology 02/2007; 86(3):191-209. DOI:10.1159/000108635 · 4.93 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA) is the drug of choice for treating epilepsy, but has the unwanted effects of inducing weight gain and increasing the risk of developing insulin resistance. The mechanism through which these side effects occur is unknown. VPA inhibits histone deacetylase (HDAC), but also decreases the transcriptional activity of CCAAT enhancer binding protein alpha (CEBPalpha). Given the possible association between VPA, CEBPalpha and adipokine gene regulation, we hypothesized that they would alter the expression of resistin (rstn), fasting-induced adipose factor (fiaf) and suppressor of cytokine signaling-3 (socs-3), genes implicated in the development of leptin and insulin resistance. We investigated the effects of VPA (1 mM; 24 or 48 h) on gene expression using real-time RT-PCR in 3 distinct models: N-1 hypothalamic neurons, 3T3-L1 adipocytes and male CD-1 mice. Subsequently, cells were treated with 5 nM of the more specific HDAC inhibitor trichostatin A (TSA). CEBPalpha expression was also modified in N-1 neurons using either RNA interference (RNAi) or an overexpression vector to evaluate its effects on target gene expression. In N-1 neurons, VPA induced significant increases in CEBPalpha and socs-3, but inhibited rstn and fiaf gene expression. In contrast, TSA induced rstn and socs-3, but inhibited fiaf. VPA also induced the expression of CEBPalphain 3T3-L1 adipocytes, but had no effect on other target genes, and TSA suppressed fiaf and socs-3.Subsequently, CEBPalpha was overexpressed (24 h) or silenced using RNAi (24 and 48 h) in N-1 neurons. The silencing of CEBPalpha led to significant decreases in rstn mRNA, but increased fiaf and socs-3 expression, whereas its overexpression had the opposite effect. When male CD-1 mice were treated with either a single (100 mg/kg; 24 h), or multiple (200 mg/kg; 72 h) daily injections of VPA, no changes in body weight or gene expression were detected in either hypothalamic or adipose tissues. In summary, these experiments reveal a potentially important role for CEBPalpha in the regulation of hypothalamic gene expression in N-1 neurons and suggest that it might modulate central energy metabolism. Although VPA also modified hypothalamic gene expression in vitro, it remains to be determined whether it has similar effects in vivo.
    Neuroendocrinology 02/2008; 88(1):25-34. DOI:10.1159/000113927 · 4.93 Impact Factor