Stem cell treatment in Amyotrophic Lateral Sclerosis.

Department of Neurology, Azienda Ospedaliera, Eastern Piedmont University of Novara, Novara, Italy.
Journal of the Neurological Sciences (Impact Factor: 2.26). 03/2008; 265(1-2):78-83. DOI: 10.1016/j.jns.2007.05.016
Source: PubMed

ABSTRACT Amyotrophic Lateral Sclerosis is a progressive fatal neurodegenerative disease that targets motor neurons. Its origin is unknown but a main role of reactive astrogliosis and microglia activation in the pathogenesis has been recently demonstrated. Surrounding neurons with healthy adjoining cells completely stops motor neuron death in some cases. Hence stem cell transplantation might represent a promising therapeutic strategy. In this study MSCs were isolated from bone marrow of 9 patients with definite ALS. Growth kinetics, immunophenotype, telomere length and karyotype were evaluated during in vitro expansion. No significant differences between donors or patients were observed. The patients received intraspinal injections of autologous MSCs at the thoracic level and monitored for 4 years. No significant acute or late side effects were evidenced. No modification of the spinal cord volume or other signs of abnormal cell proliferation were observed. Four patients show a significant slowing down of the linear decline of the forced vital capacity and of the ALS-FRS score. Our results seem to demonstrate that MSCs represent a good chance for stem cell cell-based therapy in ALS and that intraspinal injection of MSCs is safe also in the long term. A new phase 1 study is carried out to verify these data in a larger number of patients.

Download full-text


Available from: Letizia Mazzini, Jun 21, 2015
  • Source
    Amyotrophic Lateral Sclerosis, 01/2012; , ISBN: 978-953-307-806-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Autologous bone marrow stromal cells (BMSCs) offer significant practical advantages for potential clinical applications in multiple sclerosis (MS). Based on recent experimental data, a number of clinical trials have been designed for the intravenous (IV) and/or intrathecal (ITH) administration of BMSCs in MS patients. Delivery of BMSCs in the cerebrospinal fluid via intracerebroventricular (ICV) transplantation is a useful tool to identify mechanisms underlying the migration and function of these cells. In the current study, BMSCs were ICV administered in severe and mild EAE, as well as naive animals; neural precursor cells (NPCs) served as cellular controls. Our data indicated that ICV-transplanted BMSCs significantly ameliorated mild though not severe EAE. Moreover, BMSCs exerted significant anti-inflammatory effect on spinal cord with concomitant reduced axonopathy only in the mild EAE model. BMSCs migrated into the brain parenchyma and, depending on their cellular density, within brain parenchyma formed cellular masses characterized by focal inflammation, demyelination, axonal loss and increased collagen-fibronectin deposition. These masses were present in 64% of ICV BMASC-transplanted severe EAE animals whereas neither BMSCs transplanted in mild EAE cases nor the NPCs exhibited similar behavior. BMSCs possibly exerted their fibrogenic effect via both paracrine and autocrine manner, at least partly due to up-regulation of connective tissue growth factor (CTGF) under the trigger of TGFb1. Our findings are of substantial relevance for clinical trials in MS, particularly regarding the possibility that ICV transplanted BMSCs entering the inflamed central nervous system may exhibit - under conditions - a local pathology of yet unknown consequences.
    Experimental Neurology 03/2011; 230(1):78-89. DOI:10.1016/j.expneurol.2011.02.021 · 4.62 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper, written by French amyotrophic lateral sclerosis (ALS) center experts, presents an update of recent advances in fundamental, epidemiological and clinical research in ALS based on a review of the literature between September 2008 and November 2009. Among other pathophysiological mechanisms, the role of stress of the endoplasmic reticulum and the importance of energetic metabolic disturbances have been underscored. In the field of genetics, research has been advanced through the identification of mutations of the gene FUsed in Sarcoma/Translated in LipoSarcoma (FUS/TLS) in individuals with familial and sporadic ALS. This gene is involved in the regulation of transcription, splicing and RNA transport, and has functional homology to another ALS gene, TARDBP, which suggests that a common mechanism may underlie motor neuron degeneration. A report showed that mice expressing a mutant form of human TDP-43 develop a progressive and fatal neurodegenerative disease reminiscent of both ALS and frontotemporal lobar degeneration with ubiquitin aggregates (FTLD-U), providing a new animal model that may help to better understand the pathophysiology and test new therapeutics. Beside genetic studies, several epidemiologic studies have investigated the role of environmental factors. A recent study suggests that smoking is a risk factor for developing ALS and it is hypothesized that this could occur through lipid peroxidation via formaldehyde exposure. From a neuroprotective perspective, trials with IGF-1, sodium valproate, coenzyme Q or glatiramer acetate have failed to demonstrate any beneficial effect. A study published in 2008 argued that lithium may have a neuroprotective effect in ALS mice and also in patients. However, two preclinical studies failed to replicate the neuroprotective effect of lithium in ALS mice. Therapeutic trials have been performed or are currently ongoing in Europe and North America. Their results have not yet been published.
    Revue Neurologique 08/2010; 166(8-9):683-98. DOI:10.1016/j.neurol.2010.03.006 · 0.60 Impact Factor