Article

The protean nature of cells in the B lymphocyte lineage.

The Division of Basic Sciences, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
Immunity (Impact Factor: 19.75). 07/2007; 26(6):703-14. DOI: 10.1016/j.immuni.2007.05.013
Source: PubMed

ABSTRACT The subdivision of bone marrow (BM) with surface markers and reporter systems and the use of multiple culture and transplantation assays to assess differentiation potential have led to extraordinary progress in defining stages of B lymphopoiesis between the hematopoietic stem cell and B cell receptor (BCR)-expressing lymphocytes. Despite the lack of standard nomenclature and a series of technical issues that still need to be resolved, there seems to be a general consensus regarding the major route to becoming a B cell. Nevertheless, evidence that additional, minor pathways through which B lineage cells are generated exists, and a new appreciation that lymphoid progenitors are protean and able to alter their differentiation potential during embryogenesis and after birth in response to infections suggests that a full understanding of B cell development and how it is regulated has not yet been attained.

0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PI3Ks regulate several key events in the inflammatory response to damage and infection. There are four Class I PI3K isoforms (PI3Kα,β,γ,δ), three Class II PI3K isoforms (PI3KC2α, C2β, C2γ) and a single Class III PI3K. The four Class I isoforms synthesise the phospholipid ‘PIP3’. PIP3 is a ‘second messenger’ used by many different cell surface receptors to control cell movement, growth, survival and differentiation. These four isoforms have overlapping functions but each is adapted to receive efficient stimulation by particular receptor sub-types. PI3Kγ is highly expressed in leukocytes and plays a particularly important role in chemokine-mediated recruitment and activation of innate immune cells at sites of inflammation. PI3Kδ is also highly expressed in leukocytes and plays a key role in antigen receptor and cytokine-mediated B and T cell development, differentiation and function. Class III PI3K synthesises the phospholipid PI3P, which regulates endosome-lysosome trafficking and the induction of autophagy, pathways involved in pathogen killing, antigen processing and immune cell survival. Much less is known about the function of Class II PI3Ks, but emerging evidence indicates they can synthesise PI3P and PI34P2 and are involved in the regulation of endocytosis.
    Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 12/2014; 32(6). DOI:10.1016/j.bbalip.2014.12.006 · 4.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although ribosomal proteins facilitate the ribosome's core function of translation, emerging evidence suggests that some ribosomal proteins are also capable of performing tissue-restricted functions either from within specialized ribosomes or from outside of the ribosome. In particular, we have previously demonstrated that germline ablation of the gene encoding ribosomal protein Rpl22 causes a selective and p53-dependent arrest of αβ T cell progenitors at the β-selection checkpoint. We have now identified a crucial role for Rpl22 during early B cell development. Germline ablation of Rpl22 results in a reduction in the absolute number of B-lineage progenitors in the bone marrow beginning at the pro-B cell stage. Although Rpl22-deficient pro-B cells are hyporesponsive to IL-7, a key cytokine required for early B cell development, the arrest of B cell development does not result from disrupted IL-7 signaling. Instead, p53 induction appears to be responsible for the developmental defects, as Rpl22 deficiency causes increased expression of p53 and activation of downstream p53 target genes, and p53 deficiency rescues the defect in B cell development in Rpl22-deficient mice. Interestingly, the requirement for Rpl22 in the B cell lineage appears to be developmentally restricted, because Rpl22-deficient splenic B cells proliferate normally in response to Ag receptor and Toll receptor stimuli and undergo normal class-switch recombination. These results indicate that Rpl22 performs a critical, developmentally restricted role in supporting early B cell development by preventing p53 induction. Copyright © 2014 by The American Association of Immunologists, Inc.
  • Source
    Globulins: Biochemistry, Production and Role in Immunity, 1 edited by Sheila D. Milford, 12/2014: chapter 3: pages 41-70; Nova Science Publishers., ISBN: 978-1-63117-781-1

Preview

Download
0 Downloads
Available from