Cholecystokinin B-type receptors mediate a G-protein-dependent depolarizing action of sulphated cholecystokinin ocatapeptide (CCK-8s) on rodent neonatal spinal ventral horn neurons.

Integrative Neuroscience Section National Institute of Drug Abuse, National Institutes of Health/Department of Health and Human Services, Intramural Research Program, Baltimore, MD 21224, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 10/2007; 98(3):1108-14. DOI: 10.1152/jn.00148.2007
Source: PubMed

ABSTRACT Reports of cholecystokinin (CCK) binding and expression of CCK receptors in neonatal rodent spinal cord suggest that CCK may influence neuronal excitability. In patch-clamp recordings from 19/21 ventral horn motoneurons in neonatal (PN 5-12 days) rat spinal cord slices, we noted a slowly rising and prolonged membrane depolarization induced by bath-applied sulfated CCK octapeptide (CCK-8s; 1 microM), blockable by the CCK B receptor antagonist L-365,260 (1 microM). Responses to nonsulfated CCK-8 or CCK-4 were significantly weaker. Under voltage clamp (V H -65 mV), 22/24 motoneurons displayed a CCK-8s-induced tetrodotoxin-resistant inward current [peak: -136 +/- 28 pA] with a similar time course, mediated via reduction in a potassium conductance. In 29/31 unidentified neurons, CCK-8s induced a significantly smaller inward current (peak: -42.8 +/- 5.6 pA), and I-V plots revealed either membrane conductance decrease with net inward current reversal at 101.3 +/- 4.4 mV (n = 16), membrane conductance increase with net current reversing at 36.1 +/- 3.8 mV (n = 4), or parallel shift (n = 9). Intracellular GTP-gamma-S significantly prolonged the effect of CCK-8s (n = 6), whereas GDP-beta-S significantly reduced the CCK-8s response (n = 6). Peak inward currents were significantly reduced after 5-min perfusion with N-ethylmaleimide. In isolated neonatal mouse spinal cord preparations, CCK-8s (30-300 nM) increased the amplitude and discharge of spontaneous depolarizations recorded from lumbosacral ventral roots. These observations imply functional postsynaptic G-protein-coupled CCK B receptors are prevalent in neonatal rodent spinal cord.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Although cholecystokinin octapeptide-8 is important for neurological function, its neuroprotective properties remain unclear. We speculated that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against oxidative injury. In this study, retinal pigment epithelial cells were treated with peroxynitrite to induce oxidative stress. Peroxynitrite triggered apoptosis in these cells, and increased the expression of Fas-associated death domain, Bax, caspa-se-8 and Bcl-2. These changes were suppressed by treatment with cholecystokinin octapeptide-8. These results suggest that cholecystokinin octapeptide-8 can protect human retinal pigment epithelial cells against apoptosis induced by peroxynitrite.
    Neural Regeneration Research 07/2014; 9(14):1402-8. · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Parvalbumin-positive (PV+) fast-spiking basket cells are thought to play key roles in network functions related to precise time keeping during behaviorally relevant hippocampal synchronous oscillations. Although they express relatively few receptors for neuromodulators, the highly abundant and functionally important neuropeptide cholecystokinin (CCK) is able to selectively depolarize PV+ basket cells, making these cells sensitive biosensors for CCK. However, the molecular mechanisms underlying the CCK-induced selective and powerful excitation of PV+ basket cells are not understood. We used single and paired patch-clamp recordings in acute rat hippocampal slices, in combination with post hoc identification of the recorded interneurons, to demonstrate that CCK acts via G-protein-coupled CCK2 receptors to engage sharply divergent intracellular pathways to exert its cell-type-selective effects. In contrast to CCK2 receptors on pyramidal cells that signal through the canonical G(q)-PLC pathway to trigger endocannabinoid-mediated signaling events, CCK2 receptors on neighboring PV+ basket cells couple to an unusual, pertussis-toxin-sensitive pathway. The latter pathway involves ryanodine receptors on intracellular calcium stores that ultimately activate a nonselective cationic conductance to depolarize PV+ basket cells. CCK has highly cell-type-selective effects even within the PV+ cell population, as the PV+ dendrite-targeting bistratified cells do not respond to CCK. Together, these results demonstrate that an abundant ligand such as CCK can signal through the same receptor in different neurons to use cell-type-selective signaling pathways to provide divergence and specificity to its effects.
    Journal of Neuroscience 07/2011; 31(30):10993-1002. · 6.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A role for anandamide (N-arachidonoyl ethanolamide; AEA), a major endocannabinoid, in the cardiovascular system in various pathological conditions has been reported in earlier reports. In the present study, the effects of AEA on contractility, Ca(2+) signaling, and action potential (AP) characteristics were investigated in rat ventricular myocytes. Video edge detection was used to measure myocyte shortening. Intracellular Ca(2+) was measured in cells loaded with the fluorescent indicator fura-2 AM. AEA (1μM) caused a significant decrease in the amplitudes of electrically evoked myocyte shortening and Ca(2+) transients. However, the amplitudes of caffeine-evoked Ca(2+) transients and the rate of recovery of electrically evoked Ca(2+) transients following caffeine application were not altered. Biochemical studies in sarcoplasmic reticulum (SR) vesicles from rat ventricles indicated that AEA affected Ca(2+)-uptake and Ca(2+)-ATPase activity in a biphasic manner. [(3)H]-ryanodine binding and passive Ca(2+) release from SR vesicles were not altered by 10μM AEA. Whole-cell patch-clamp technique was employed to investigate the effect of AEA on the characteristics of APs. AEA (1μM) significantly decreased the duration of AP. The effect of AEA on myocyte shortening and AP characteristics was not altered in the presence of pertussis toxin (PTX, 2μg/ml for 4h), AM251 and SR141716 (cannabinoid type 1 receptor antagonists; 0.3μM) or AM630 and SR 144528 (cannabinoid type 2 receptor antagonists; 0.3μM). The results suggest that AEA depresses ventricular myocyte contractility by decreasing the action potential duration (APD) in a manner independent of CB1 and CB2 receptors.
    Cell calcium 01/2014; · 4.29 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014