Article

Detection of amyloid beta aggregates in the brain of BALB/c mice after Chlamydia pneumoniae infection.

Department of Medical Microbiology, Cardiovascular Research Institute Maastricht, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
Acta Neuropathologica (Impact Factor: 9.78). 10/2007; 114(3):255-61. DOI: 10.1007/s00401-007-0252-3
Source: PubMed

ABSTRACT Neuroinflammation, initiated by cerebral infection, is increasingly postulated as an aetiological factor in neurodegenerative diseases such as Alzheimer's disease (AD). We investigated whether Chlamydia pneumoniae (Cpn) infection results in extracellular aggregation of amyloid beta (Abeta) in BALB/c mice. At 1 week post intranasal infection (p.i.), Cpn DNA was detected predominantly in the olfactory bulbs by PCR, whereas brains at 1 and 3 months p.i. were Cpn negative. At 1 and 3 months p.i., extracellular Abeta immunoreactivity was detected in the brain of Cpn-infected mice but also in the brain of mock-infected mice and mice that were neither Cpn infected nor mock infected. However, these extracellular Abeta aggregates showed morphological differences compared to extracellular Abeta aggregates detected in the brain of transgenic APP751(SL)/PS1(M146L) mice. These data do not unequivocally support the hypothesis that Cpn infection induces the formation of AD-like Abeta plaques in the brain of BALB/c mice, as suggested before. However, future studies are required to resolve these differences and to investigate whether Cpn is indeed an etiological factor in AD pathogenesis.

Download full-text

Full-text

Available from: Frank R M Stassen, Jul 02, 2015
0 Followers
 · 
122 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The importance of inflammation in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease, is increasingly being recognized. Although amyloid-beta is considered to be one of the main initiators of these inflammatory processes, some reports suggest that brain infections may also contribute or even initiate the neuroinflammation. One of the best studied pathogens that might be involved in this phenomenon is the herpes simplex virus, but more recently the obligate intracellular respiratory Gram-negative bacterium, Chlamydia pneumoniae, has also been associated with Alzheimer's disease. The present article discusses recent data on the role of C. pneumoniae infection in neuroinflammation and its potential contribution to the pathogenesis of Alzheimer's disease.
    Drugs of today (Barcelona, Spain: 1998) 11/2009; 45 Suppl B:159-64.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The major Alzheimer's disease susceptibility genes (APOE, clusterin, complement receptor 1 (CR1) and phosphatidylinositol binding clathrin assembly protein, PICALM) can be implicated directly (APOE, CR1) or indirectly (clusterin and PICALM) in the herpes simplex life cycle. The virus binds to proteoliposomes containing APOE or APOA1 and also to CR1, and both clusterin and PICALM are related to a mannose-6-phosphate receptor used by the virus for cellular entry and intracellular transport. PICALM also binds to a nuclear exportin used by the virus for nuclear egress. Clusterin and complement receptor 1 are both related to the complement pathways and play a general role in pathogen defence. In addition, the amyloid precursor protein APP is involved in herpes viral transport and gamma-secretase cleaves a number of receptors used by the virus for cellular entry. APOE, APOA1 and clusterin, or alpha 2-macroglobulin, insulysin and caspase 3, which also bind to the virus, are involved in beta-amyloid clearance or degradation, as are the viral binding complement components, C3 and CR1. There are multiple ways in which the products of key susceptibility genes might be able to modify the viral life cycle and in turn the virus interacts with key proteins involved in APP and beta-amyloid processing. These interactions support a role for the herpes simplex virus in Alzheimer's disease pathology and suggest that antiviral agents or vaccination might be considered as viable therapeutic strategies in Alzheimer's disease.
    Neuroscience Letters 10/2010; 483(2):96-100. DOI:10.1016/j.neulet.2010.07.066
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classical population genetics shows that varying permutations of genes and risk factors permit or disallow the effects of causative agents, depending on circumstance. For example, genes and environment determine whether a fox kills black or white rabbits on snow or black ash covered islands. Risk promoting effects are different on each island, but obscured by meta-analysis or GWAS data from both islands, unless partitioned by different contributory factors. In Alzheimer's disease, the foxes appear to be herpes, borrelia or chlamydial infection, hypercholesterolemia, hyperhomocysteinaemia, diabetes, cerebral hypoperfusion, oestrogen depletion, or vitamin A deficiency, all of which promote beta-amyloid deposition in animal models—without the aid of gene variants. All relate to risk factors and subsets of susceptibility genes, which condition their effects. All are less prevalent in convents, where nuns appear less susceptible to the ravages of ageing. Antagonism of the antimicrobial properties of beta-amyloid by Abeta autoantibodies in the ageing population, likely generated by antibodies raised to beta-amyloid/pathogen protein homologues, may play a role in this scenario. These agents are treatable by diet and drugs, vitamin supplementation, pathogen detection and elimination, and autoantibody removal, although again, the beneficial effects of individual treatments may be tempered by genes and environment.
    01/2011; DOI:10.5402/2011/394678