Article

Replication and protection of telomeres.

The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037-1099, USA.
Nature (Impact Factor: 42.35). 07/2007; 447(7147):924-31. DOI: 10.1038/nature05976
Source: PubMed

ABSTRACT During the evolution of linear genomes, it became essential to protect the natural chromosome ends to prevent triggering of the DNA-damage repair machinery and enzymatic attack. Telomeres - tightly regulated complexes consisting of repetitive G-rich DNA and specialized proteins - accomplish this task. Telomeres not only conceal linear chromosome ends from detection and inappropriate repair but also provide a buffer to counteract replication-associated shortening. Lessons from many model organisms have taught us about the complications of maintaining these specialized structures. Here, we discuss how telomeres interact and cooperate with the DNA replication and DNA-damage repair machineries.

2 Bookmarks
 · 
93 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: End-stage renal disease (ESRD) patients have a defective T-cell-mediated immune system which is related to excessive premature ageing of the T-cell compartment. This is likely to be caused by the uremia-associated pro-inflammatory milieu, created by loss of renal function. Therefore, ESRD patients are highly susceptible for infections, have an increased risk for virus-associated cancers, respond poorly to vaccination and have an increased risk for atherosclerotic diseases. Three ageing parameters can be used to assess an immunological T-cell age. First, thymic output can be determined by assessing the T-cell receptor excision circles-content together with CD31 expression within the naïve T cells. Second, the telomere length of T cells and third the T-cell differentiation status are also indicators of T-cell ageing. Analyses based on these parameters in ESRD patients revealed that the immunological T-cell age is increased by on average 20 years compared to the chronological age. After kidney transplantation (KTx) the aged T-cell phenotype persists although the pro-inflammatory milieu is diminished. This might be explained by epigenetic modifications at hematopoietic stem cells level. Assessment of an immunological T-cell age could be an important tool to identify KTx recipients who are at risk for allograft rejection or to prevent over-immunosuppression.
    World journal of nephrology. 11/2014; 3(4):268-76.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nuclear transcription factor c-Myc is a member of the Myc gene family with multiple functions and located on band q24.1 of chromosome 8. The c-Myc gene is activated by chromosomal translocation, rearrangement, and amplification. Its encoded protein transduces intracellular signals to the nucleus, resulting in the regulation of cell proliferation, differentiation, and apoptosis, and has the ability to transform cells and bind chromosomal DNA. c-Myc also plays a critical role in malignant transformation. The abnormal over-expression of c-Myc is frequently observed in some tumors, including carcinomas of the breast, colon, and cervix, as well as small-cell lung cancer, osteosarcomas, glioblastomas, and myeloid leukemias, therefore making it a possible target for anticancer therapy. In this minireview, we summarize unique characteristics of c-Myc and therapeutic strategies against cancer using small molecules targeting the oncogene, and discuss the prospects in the development of agents targeting c-Myc, in particular G-quadruplexes formed in c-Myc promoter and c-Myc/Max dimerization. Such information will be of importance for the research and development of c-Myc-targeted drugs.
    International journal of biological sciences 01/2014; 10(10):1084-1096. · 4.37 Impact Factor
  • Source

Full-text (2 Sources)

Download
15 Downloads
Available from
Jun 1, 2014