Article

Replication and protection of telomeres.

The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California 92037-1099, USA.
Nature (Impact Factor: 42.35). 07/2007; 447(7147):924-31. DOI: 10.1038/nature05976
Source: PubMed

ABSTRACT During the evolution of linear genomes, it became essential to protect the natural chromosome ends to prevent triggering of the DNA-damage repair machinery and enzymatic attack. Telomeres - tightly regulated complexes consisting of repetitive G-rich DNA and specialized proteins - accomplish this task. Telomeres not only conceal linear chromosome ends from detection and inappropriate repair but also provide a buffer to counteract replication-associated shortening. Lessons from many model organisms have taught us about the complications of maintaining these specialized structures. Here, we discuss how telomeres interact and cooperate with the DNA replication and DNA-damage repair machineries.

Download full-text

Full-text

Available from: Ramiro E Verdún, Mar 03, 2014
2 Followers
 · 
102 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Telomeres play important roles in maintaining the stability of linear chromosomes. Telomere maintenance involves dynamic actions of multiple proteins interacting with long repetitive sequences and complex dynamic DNA structures, such as G-quadruplexes, T-loops and t-circles. Given the heterogeneity and complexity of telomeres, single-molecule approaches are essential to fully understand the structure–function relationships that govern telomere maintenance. In this review, we present a brief overview of the principles of single-molecule imaging and manipulation techniques. We then highlight results obtained from applying these single-molecule techniques for studying structure, dynamics and functions of G-quadruplexes, telomerase, and shelterin proteins.
    DNA repair 08/2014; 20. DOI:10.1016/j.dnarep.2014.01.012 · 3.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous in vivo study demonstrated that human nucleus pulposus chondrocytes (NPCs) in aging discs exhibited characteristic senescent features such as an increased senescence-associated β-galactosidase (SA-β-gal) expression, shortened telomere, and decreased telomerase activity. The replicative p53-p21-pRB pathway, rather than the stress-induced p16-pRB pathway, played a more important role in the senescence of NPCs in an in vivo condition, although there is a situation in which both the pathways can be activated simultaneously. However, the in vitro lifespan and senescence mechanisms of human NPCs remain unclear. To evaluate the underlying mechanisms of in vitro lifespan and in vitro senescence of the human NPCs and to verify whether the in vitro senescence mechanisms of the human NPC can represent the in vivo aging mechanisms of the cell. An in vitro study. We serially cultivated human NPCs from patients of different ages (35, 42, 55, 66, and 76 years) until the cells reached the end of their in vitro lifespan. During each subcultivation, we calculated NPCs cumulative population doubling level (PDL) and examined senescence markers (SA-β-gal, telomere length, telomerase activity, and p53, p21, pRB, and p16 expressions). The cumulative PDLs of the NPCs from patients aged 35, 42 55, 66, and 76 years were 32, 29, 11, 9, and 11, respectively. The younger patients (35 and 42 years) had a higher mean of cumulative PDLs than the elderly patients did (55, 66, and 76 years; 30.5 vs. 10.3; p=.001). In addition, there was a significant, negative correlation between the cumulative PDLs and patient's age (r=-0.89; p=.04). With advancing culture passages, the NPCs irrespective of patient's age exhibited characteristic senescent features, such as an increase in SA-β-gal expression, shortening of telomeres, decrease in telomerase activity, and activation of both replicative p53-p21-pRB and stress-induced p16-pRB pathways. However, all the senescent features occurred at the earlier passages in elderly compared with younger patients. The present study demonstrated that the human NPCs had a finite in vitro lifespan, which declined with host aging. The in vitro lifespan was determined by both replicative and stress-induced senescence mechanisms. The similarity in the in vitro senescent features with those apparent in the previous in vivo study suggests a possibility of the in vitro senescence mechanisms of the human NPC as a model of the in vivo aging mechanisms of the cell for future studies.
    The spine journal: official journal of the North American Spine Society 12/2013; DOI:10.1016/j.spinee.2013.06.099 · 2.80 Impact Factor