Article

Adolescent rats find repeated Delta(9)-THC less aversive than adult rats but display greater residual cognitive deficits and changes in hippocampal protein expression following exposure.

School of Psychology, University of Sydney, Sydney, NSW, Australia.
Neuropsychopharmacology (Impact Factor: 7.83). 05/2008; 33(5):1113-26. DOI: 10.1038/sj.npp.1301475
Source: PubMed

ABSTRACT The current study examined whether adolescent rats are more vulnerable than adult rats to the lasting adverse effects of cannabinoid exposure on brain and behavior. Male Wistar rats were repeatedly exposed to Delta-9-tetrahydrocannabinol (Delta(9)-THC, 5 mg/kg i.p.) in a place-conditioning paradigm during either the adolescent (post-natal day 28+) or adult (post-natal day 60+) developmental stages. Adult rats avoided a Delta(9)-THC-paired environment after either four or eight pairings and this avoidance persisted for at least 16 days following the final Delta(9)-THC injection. In contrast, adolescent rats showed no significant place aversion. Adult Delta(9)-THC-treated rats produced more vocalizations than adolescent rats when handled during the intoxicated state, also suggesting greater drug-induced aversion. After a 10-15 day washout, both adult and adolescent Delta(9)-THC pretreated rats showed decreased social interaction, while only Delta(9)-THC pretreated adolescent rats showed significantly impaired object recognition memory. Seventeen days following their last Delta(9)-THC injection, rats were euthanased and hippocampal tissue processed using two-dimensional gel electrophoresis proteomics. There was no evidence of residual Delta(9)-THC being present in blood at this time. Proteomic analysis uncovered 27 proteins, many involved in regulating oxidative stress/mitochondrial functioning and cytoarchitecture, which were differentially expressed in adolescent Delta(9)-THC pretreated rats relative to adolescent controls. In adults, only 10 hippocampal proteins were differentially expressed in Delta(9)-THC compared to vehicle-pretreated controls. Overall these findings suggest that adolescent rats find repeated Delta(9)-THC exposure less aversive than adults, but that cannabinoid exposure causes greater lasting memory deficits and hippocampal alterations in adolescent than adult rats.

1 Follower
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adolescent exposure to cannabinoids in vulnerable individuals is proposed to be a risk factor for psychiatric conditions later in life, particularly schizophrenia. Evidence from studies in animals has indicated that a combination of repeated pubertal cannabinoid administration with either neonatal prefrontocortical lesion, isolation rearing or chronic NMDA receptor antagonism administration induces enhanced schizophrenia-like behavioral disruptions. The effects of adolescent exposure to CB1 receptor agonists, however, have not been tested in a developmental disruption model of schizophrenia. This was tested in the methylazoxymethanol (MAM) model, in which repeated treatment with the synthetic cannabinoid agonist WIN 55,212-2 (WIN; 1.2 mg/kg) was extended over 25 days throughout puberty (PD40-PD65) in control and MAM rats. The rats received 20 injections which were delivered irregularly to mimic the human condition. Adult rats were tested for attentional set-shifting task and locomotor response to amphetamine, which was compared with in vivo recording from ventral tegmental area (VTA) dopamine (DA) neurons. MAM-treated rats showed impairment in the attentional set-shifting task, augmented locomotor response to amphetamine administration and increased number of spontaneously active DA neurons in the VTA. Interestingly, pubertal WIN treatment in normal animals induced similar changes at adulthood as those observed in MAM-treated rats, supporting the notion that adolescence exposure to cannabinoids may represent a risk factor for developing schizophrenia-like signs at adulthood. However, contrary to expectations, pubertal WIN administration did not exacerbate the behavioral and electrophysiological changes in MAM-treated rats beyond that observed in WIN-treated saline rats. Indeed, WIN treatment actually attenuated the locomotor response to amphetamine in MAM rats without impacting DA neuron activity states. Taken together, the present results indicate that the impact of cannabinoids during puberty/adolescence on schizophrenia models is more complex than may be predicted. © The Author 2014. Published by Oxford University Press on behalf of CINP.
    The International Journal of Neuropsychopharmacology 12/2014; DOI:10.1093/ijnp/pyu018 · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Marijuana is the most widely used illicit drug among adolescents and young adults. Unique cognitive, emotional, and social changes occur during this critical period of development from childhood into adulthood. The adolescent brain is in a state of transition and differs from the adult brain with respect to both anatomy (e.g., neuronal connections and morphology) and neurochemistry (e.g., dopamine, GABA, and glutamate). These changes are thought to support the emergence of adult cerebral processes and behaviors. The endocannabinoid system plays an important role in development by acting on synaptic plasticity, neuronal cell proliferation, migration, and differentiation. Delta-9-tetrahydrocanabinol (THC), the principal psychoactive component in marijuana, acts as a partial agonist of the cannabinoid type 1 receptor (CB1R). Thus, over-activation of the endocannabinoid system by chronic exposure to CB1R agonists (e.g., THC, CP-55,940, and WIN55,212-2) during adolescence can dramatically alter brain maturation and cause long-lasting neurobiological changes that ultimately affect the function and behavior of the adult brain. Indeed, emerging evidence from both human and animal studies demonstrates that early-onset marijuana use has long-lasting consequences on cognition; moreover, in humans, this use is associated with a two-fold increase in the risk of developing a psychotic disorder. Here, we review the relationship between cannabinoid exposure during adolescence and the increased risk of neuropsychiatric disorders, focusing on both clinical and animal studies.
    Frontiers in Neuroscience 11/2014; 8:361. DOI:10.3389/fnins.2014.00361
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heavy cannabis use has been frequently associated with increased rates of mental illness and cognitive impairment, particularly amongst adolescent users. However, the neurobiological processes that underlie these associations are still not well understood. In this review, we discuss the findings of studies examining the acute and chronic effects of cannabis use on the brain, with a particular focus on the impact of commencing use during adolescence. Accumulating evidence from both animal and human studies suggests that regular heavy use during this period is associated with more severe and persistent negative outcomes than use during adulthood, suggesting that the adolescent brain may be particularly vulnerable to the effects of cannabis exposure. As the endocannabinoid system plays an important role in brain development, it is plausible that prolonged use during adolescence results in a disruption in the normative neuromaturational processes that occur during this period. We identify synaptic pruning and white matter development as two processes that may be adversely impacted by cannabis exposure during adolescence. Potentially, alterations in these processes may underlie the cognitive and emotional deficits that have been associated with regular use commencing during adolescence.
    Pharmacology [?] Therapeutics 11/2014; 148. DOI:10.1016/j.pharmthera.2014.11.009 · 7.75 Impact Factor

Full-text (3 Sources)

Download
50 Downloads
Available from
Jun 5, 2014