Article

Cell type-specific activation of p38 MAPK in the brain regions of hypoxic preconditioned mice.

Institute for Biomedical Science of Pain, Beijing Key Laboratory for Neural Regeneration and Repairing, Department of Neurobiology, Capital Medical University, #10 You An Men Wai Xi Tou Tiao, Beijing 100069, China.
Neurochemistry International (Impact Factor: 2.65). 01/2008; 51(8):459-66. DOI: 10.1016/j.neuint.2007.04.028
Source: PubMed

ABSTRACT Activation of p38 mitogen-activated protein kinase (p38 MAPK) has been implicated as a mechanism of ischemia/hypoxia-induced cerebral injury. The current study was designed to explore the involvement of p38 MAPK in the development of cerebral hypoxic preconditioning (HPC) by observing the changes in dual phosphorylation (p-p38 MAPK) at threonine180 and tyrosine182 sites, protein expression, and cellular distribution of p-p38 MAPK in the brain of HPC mice. We found that the p-p38 MAPK levels, not protein expression, increased significantly (p<0.05) in the regions of frontal cortex, hippocampus, and hypothalamus of mice in response to repetitive hypoxic exposure (H1-H6, n=6 for each group) when compared to values of the control normoxic group (H0, n=6) using Western blot analysis. Similar results were also confirmed by an immunostaining study of the p-p38 MAPK location in the frontal cortex, hippocampus, and hypothalamus of mice from HPC groups. To further define the cell type of p-p38 MAPK positive cells, we used a double-labeled immunofluorescent staining method to co-localize p-p38 MAPK with neurofilaments heavy chain (NF-H, neuron-specific marker), S100 (astrocyte-specific marker), and CD11b (microglia-specific maker), respectively. We found that the increased p-p38 MAPK occurred in microglia of cortex and hippocampus, as well as in neurons of hypothalamus of HPC mice. These results suggest that the cell type-specific activation of p38 MAPK in the specific brain regions might contribute to the development of cerebral HPC mechanism in mice.

0 Followers
 · 
223 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported the involvement of conventional protein kinase C (cPKC) βII, γ, novel PKC (nPKC) ε and their interacting proteins in hypoxic pre-conditioning (HPC)-induced neuroprotection. In this study, the large-scale miRNA microarrays and bioinformatics analysis were used to determine the differentially expressed miRNAs and their PKC-isoform specific gene network in mouse brain after HPC and 6 h middle cerebral artery occlusion (MCAO). We found 4 up-regulated and 13 down-regulated miRNAs in the cortex of HPC mice, 26 increased and 39 decreased gene expressions of miRNAs in the peri-infarct region of 6 h MCAO mice, and 11 up-regulated and 22 down-regulated miRNAs in the peri-infarct region of HPC and 6 h MCAO mice. Based on Diff Score, 19 differentially expressed miRNAs were identified in HPC and 6 h MCAO mouse brain. Then the miRNA-gene-network of 19 specified miRNAs target genes of cPKCβII, γ and nPKCε-interacting protein was predicted by using bioinformatics analysis of genome databases. Furthermore, the down-regulated miR-615-3p during HPC had a detrimental effect on the oxygen-glucose deprivation (OGD)-induced N2A cell injury. These results suggested that the identified 19 miRNAs, notably miR-615-3p, might target these genes of cPKCβII, γ and nPKCε-interacting proteins involved in HPC-induced neuroprotection.
    Journal of Neurochemistry 12/2011; 120(5):830-41. DOI:10.1111/j.1471-4159.2011.07624.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidences approve the long-term analgesia effects of intrathecal lidocaine in patients with chronic pain and in animal peripheral nerve injury models, but the underlying mechanism remains elusive. Previous evidences suggest that the activation of the p38 MAPK signaling pathway in hyperactive microglia in the dorsal horn of spinal cord involves in nerve injury-induced neuropathic pain. In this study, we demonstrate that attenuating phosphorylation of p38 MAPK in the activated microglia of spinal cord, at least partly, is the mechanism of intrathecal lidocaine reversing established tactile allodynia in chronic constriction injury model of rats. This finding not only provides a new insight into the mechanisms underlying long-term therapeutic effects of lidocaine on neuropathic pain, but also reveals one more specific drug target for analgesia.
    Neuroscience Letters 02/2008; 431(2):129-34. DOI:10.1016/j.neulet.2007.11.065 · 2.06 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adults of the False Southern King crab, Paralomis granulosa, were starved between 0 and 12 days to evaluate the impact of fasting on the oxygen consumption, nitrogen excretion, O/N ratio and changes on biochemical composition of the hepatopancreas. During the experiment, no mortalities were recorded; physiological changes were detected after 6 days of fasting with an increase of nitrogen excretion (p<0.05). After 9 days of starvation, the crabs showed a maximum decrease in the lipid content (4.3+/-1.2%, p<0.05), accompanied by an increase in oxygen consumption (53.1+/-10.9 microg O2 h(-1) g(-1)). The lowest O/N ratio was detected after 6 days (6.4+/-4.8) and the highest after 12 days of fasting (38.1+/-20.4), indicating that initially crabs utilized proteins as source of energy , followed by lipids. Moreover, after 12 days, there was a significant increase in the hepatosomatic index (HI) and total lipid content (9.7+/-1.0%, p<0.05), which could be associated with the re-absorption of other tissues to the hepatopancreas. Our results provide new information on this species that shows a different pattern of adaptation for each period of starvation and a good correlation between physiological and biochemical parameters. The ability to withstand and recover from periods of nutritional stress is an important adaptation for survival of any organism that must sporadically endure periods of limited food supply.
    Comparative Biochemistry and Physiology Part B Biochemistry and Molecular Biology 03/2005; 140(3):411-6. DOI:10.1016/j.cbpc.2004.11.003 · 1.90 Impact Factor

Preview

Download
2 Downloads
Available from