DNA damage in bipolar disorder.

Department of Biochemistry, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos, 2600/Anexo. Zip code: 90035-003. Porto Alegre, Brazil.
Psychiatry Research (Impact Factor: 2.68). 10/2007; 153(1):27-32. DOI: 10.1016/j.psychres.2006.03.025
Source: PubMed

ABSTRACT Bipolar disorder (BD) is a prevalent, chronic, severe, and highly disabling psychiatric disorder that is associated with increased morbidity and mortality due to general medical conditions. There is an emerging body of evidence correlating chronic medical conditions with DNA damage. The present study was designed to assess DNA damage in BD patients using the comet assay (CA). Thirty-two bipolar-I outpatients diagnosed using the Structured Clinical Interview for DSM-IV were matched with 32 healthy volunteers. Manic and depressive symptoms were assessed using the Young Mania Rating Scale and the Hamilton Depression Rating Scale, respectively. Peripheral blood samples were collected and a standard protocol for CA preparation and analysis was performed. The present study showed that BD outpatients present an increased frequency of DNA damage relative to controls. The frequency of DNA damage correlated with the severity of symptoms of depression and mania.

Download full-text


Available from: Mirian Salvador, Jun 29, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bipolar disorder (BD) is a severe chronic psychiatric disorder that has been associated with cellular dysfunctions related to mitochondria, neurotrophin levels, and oxidative stress. Evidence has shown that endoplasmic reticulum (ER) stress may be a common pathway of the cellular changes described in BD. In the present study we assessed unfolded protein response (UPR) and the effects of this cellular process on lymphocytes from patients with BD. We also evaluated whether the stage of chronicity of BD was associated with changes in UPR parameters. Cultured lymphocytes from 30 patients with BD and 32 age- and sex-matched controls were treated with tunicamycin, an ER stressor, for 12 or 24 h to measure levels of UPR-related proteins (GRP78, eIF2α-P, and CHOP) using flow cytometry, and for 48 h to analyse ER stress-induced cell death. In healthy controls but not in patients we found an increase in levels of GRP78, eIF2α-P, and CHOP after ER stress induction. In addition, tunicamycin-induced cell death was significantly higher in patients compared to controls. More importantly, early-stage patients did not differ from controls while the late-stage patients showed an impaired ER stress response. Thus, dysfunction in ER-related stress response may be associated with decreased cellular resilience in BD and illness progression.
    The International Journal of Neuropsychopharmacology 05/2014; 17(09):1-11. DOI:10.1017/S1461145714000443 · 5.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Several studies have described increased oxidative stress (OxS) parameters and imbalance of antioxidant enzymes in Bipolar Disorder (BD) but few is know about the impact of treatment at these targets. However, no study has evaluated OxS parameters in unmedicated early stage BD and their association with lithium treatment in bipolar depression. Patients with BD I or II (n = 29) in a depressive episode were treated for 6 weeks with lithium. Plasma samples were collected at baseline and endpoint, and were also compared to age-matched controls (n = 28). The thiobarbituric acid reactive substances (TBARS), and the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were measured. Subjects with BD depression at baseline presented a significant increase in CAT (p = 0.005) and GPx (p < 0.001) levels, with lower SOD/CAT ratio (p = 0.001) and no changes on SOD or TBARS compared to healthy controls. Regarding therapeutics, lithium only induced a decrease in TBARS (p = 0.023) and SOD (p = 0.029) levels, especially in BDII. Finally, TBARS levels were significantly lower at endpoint in lithium responders compared to non-responders (p = 0.018) with no difference in any biomarker regarding remission. The present findings suggest a reactive increase in antioxidant enzymes levels during depressive episodes in early stage BD with minimal prior treatment. Also, decreased lipid peroxidation (TBARS) levels were observed, associated with lithium's clinical efficacy. Overall, these results reinforce the role for altered oxidative stress in the pathophysiology of BD and the presence of antioxidant effects of lithium in the prevention of illness progression and clinical efficacy.
    Journal of Psychiatric Research 12/2013; 50. DOI:10.1016/j.jpsychires.2013.11.011 · 4.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate possible differences in peripheral levels of chemokines, BDNF and oxidative markers between patients with Schizophrenia (SZ) and matched healthy controls, and investigate the correlation of these biomarkers with cognitive performance. Thirty individuals with SZ and 27 healthy controls were included and the following plasmatic biomarkers' levels were determined according to manufacturers' instructions: BDNF, TBARS, protein carbonyl content (PCC) and the chemokines CXCL-10/IP-10, CXCL-8/IL-8, CCL-11, CCL-24/Eotaxin-2, CCL-2/MCP-1, CCL-3/MIP-1. Selected neuropsychological tasks were administered to assess verbal learning (Hopkins Verbal Learning Test), verbal fluency (FAS test), working memory (Visual Working Memory Task, Keep Track Task, Letter Memory Task), set shifting (Plus-minus task, Number-letter task), inhibition (Computerized Stroop Task, Semantic Generation Task) and complex executive function tasks (Tower of London and the shortened version of the WCST-64). Compared with the healthy control group, individuals with SZ presented significantly higher levels of BDNF and the chemokine CCL-11, and lower levels of TBARS and the chemokine CXCL-10/IP-10. When we examined only the SZ group, BDNF levels were positively correlated with semantic generation tasks. Working memory ability was negatively correlated with PCC. Regarding chemokines, CCL-11 was negatively correlated to performance in working memory test, and positively correlated with cognitive flexibility task. CXCL-8/IL-8 was positively correlated with verbal fluency. CCL-24/Eotaxin-2 was positively correlated with semantic generation ability and letter memory task. Our results indicate that cognitive performance in SZ is associated with mediators of neuroplasticity that can be measured peripherally.
    Journal of Psychiatric Research 06/2013; 47(10). DOI:10.1016/j.jpsychires.2013.05.032 · 4.09 Impact Factor