Article

Suction due to left ventricular assist: implications for device control and management.

Department of Biophysics, Cardiovascular Research Institute Maastricht/Maastricht University, The Netherlands.
Artificial Organs (Impact Factor: 1.96). 08/2007; 31(7):542-9. DOI:10.1111/j.1525-1594.2007.00420.x
Source: PubMed

ABSTRACT Left ventricular assist device (LVAD) overpumping is associated with hemolysis, thrombus release, and tissue damage at the pump inlet. However, the impact of LVAD suction on pulmonary circulatory function remains unknown. We investigated LVAD suction as induced by pulmonary artery banding and overpumping in experimental animals and in a computer model. In six sheep, a rotary LVAD was implanted. Before inducing suction, partial support (40-60% of cardiac output) was established and characterized by measuring pressures and flows. In the animals, pulmonary artery occlusion (PAOC) elicited LVAD suction (left ventricular pressure was from -10 to -20 mm Hg) within 5-10 heartbeats. During suction, aortic pressure dropped to 50% and LVAD flow decreased significantly. After releasing the occlusion (20 s), the collapsed state persisted for another 20 s. A similar trend was obtained by simulating PAOC in the computer model. Additional simulations showed that pulmonary vascular resistance (PVR), volume status, and right ventricular (RV) contractility are exponentially related to the persistence of collapse after a suction event. Even modest increases in predisposing factors (elevated PVR, RV dysfunction, hypovolemia) caused sustained hemodynamic collapse lasting in excess of 15 min. Both in selected animals and the computer model, comparable suction-induced collapse was obtained by increasing LVAD speed by about 33%. Attempted compensation by simply decreasing speed was not effective, but temporarily shutting down the LVAD caused rapid reversal of collapse. In conclusion, rotary LVAD suction causes unfavorable conditions for effective unloading. The use of pump interventions appears a promising tool to detect suction and to avoid the associated hemodynamic depression.

0 0
 · 
0 Bookmarks
 · 
63 Views
  • [show abstract] [hide abstract]
    ABSTRACT: Long-term rotary left ventricular assist devices (LVADs) are increasingly employed to bridge patients with end-stage heart failure to transplant or as a destination therapy. Significant recent device development has increased patient support times, shifting further development focus toward physiologically sensitive control of the pump operation. Sensorless control of these devices would benefit from increased observability of the ventricular volume/preload to the pump, in order to regulate flow based on preload, imitating the native Frank-Starling flow control. Monitoring the transmitted flow pulse through the pump has been used as a surrogate for preload, although means of maximizing its transmission are not clear. However, it is known that a flat hydraulic performance curve of the rotary pump induces high changes in flow for a given change in pressure head. The aim of this study was to determine geometric pump parameters responsible for increasing this flow pulse transmission and to demonstrate this increase in vitro. The sensitivity of the performance gradient to blade angles, blade heights, blade clearance, and channel areas were studied. Resulting pressure head, flow, and hydraulic efficiency were analyzed with respect to textbook designed procedures. Then pumps with comparably "flat" and "steep" performance curves were used to simulate LVAD support in vitro over a range of pump flow rates to observe the transmitted flow pulsatility. It was found that an outlet blade angle of 90°, inlet blade angle between 25 and 45°, and large throat area generated a "flatter" performance curve. The transmitted flow pulsatility through a pump with a flat performance curve was 68% higher than that of a steep performance curve at a flow rate of 5 L/min. Substantial gains in the observability of LVAD preload/resident blood volume in the ventricle exist through the careful selection of specific pump geometries.
    Artificial Organs 07/2012; 36(10):859-67. · 1.96 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: In recent times, the problem of noninvasive suction detection for implantable rotary blood pumps has attracted substantial research interest. Here, we compare the performance of various suction indices for different types of suction and non-suction events based on pump speed irregularity. A total of 171 different indices that consist of previously proposed as well as newly introduced suction indices are tested using regularized logistic regression. These indices can be classified as amplitude based (derived from the mean, maximum, and minimum values of a cycle), duration based (derived from the duration of a cycle), gradient based (derived from the first order as well as higher order differences) and frequency based (derived from the power spectral density). The non-suction event data consists of ventricular ejection with or without arrhythmia and intermittent and continuous non-opening of the aortic valve. The suction event data consists of partial ventricular collapse that occurs intermittently as well as continuously with or without arrhythmia. In addition, we also attempted to minimize the usage of multiple indices by applying the sequential forward floating selection method to find which combination of indices gives the best performance. In general, the amplitude-based and gradient-based indices performed quite well while the duration-based and frequency-based indices performed poorly. By having only two indices ([i] the maximum gradient change in positive slope; and [ii] the standard deviation of the maximum value in a cycle), we were able to achieve a sensitivity of 98.9% and a specificity of 99.7%.
    Artificial Organs 05/2013; · 1.96 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Rotary ventricular assist device (VAD) support of the cardiovascular system is susceptible to suction events due to the limited preload sensitivity of these devices. This may be of particular concern with rotary biventricular support (BiVAD) where the native, flow balancing Starling response is diminished in both ventricles. The reliability of sensor and sensorless-based control systems which aim to control VAD flow based on preload has limitations, and, thus, an alternative solution is desired. This study introduces a compliant inflow cannula (CIC) which could improve the preload sensitivity of a rotary VAD by passively altering VAD flow depending on preload. To evaluate the design, both the CIC and a standard rigid inflow cannula were inserted into a mock circulation loop to enable biventricular heart failure support using configurations of atrial and ventricular inflow, and arterial outflow cannulation. A range of left (LVAD) and right VAD (RVAD) rotational speeds were tested as well as step changes in systemic/pulmonary vascular resistance to alter relative preloads, with resulting flow rates recorded. Simulated suction events were observed, particularly at higher VAD speeds, during support with the rigid inflow cannula, while the CIC prevented suction events under all circumstances. The compliant section passively restricted its internal diameter as preload was reduced, which increased the VAD circuit resistance and thus reduced VAD flow. Therefore, a CIC could potentially be used as a passive control system to prevent suction events in rotary left, right, and biventricular support.
    Artificial Organs 08/2012; 36(8):683-90. · 1.96 Impact Factor