Molecular Cloning and the Allergenic Characterization of Tropomyosin from Tyrophagus putrescentiae

Department of Parasitology and Institute of Tropical Medicine, Brain Korea 21 Project for Medical Science, Yonsei University, College of Medicine, Seoul, Korea.
Protein and Peptide Letters (Impact Factor: 1.07). 02/2007; 14(5):431-6. DOI: 10.2174/092986607780782777
Source: PubMed


Storage mites have been recognized as a cause of asthma and rhinitis. Studies from several countries have shown that the IgE-mediated allergy to storage mites is of considerable importance, especially in rural populations. This study aimed to identify and characterize new allergens from Tyrophagus putrescentiae. A partial cDNA sequence encoding tropomyosin was isolated from the cDNA library by immunoscreening using anti-mouse IgG1 sera raised against T. putrescentiae whole body extract. The deduced amino acid sequence shares 64-94% identity with previously known allergenic tropomyosins. Its recombinant protein was produced by using a pET 28b expression system and purified by affinity chromatography using Ni-NTA agarose. The IgE reactivities of tropomyosins from T. putrescentiae and Dermatophagoides farinae were compared by enzyme linked immunosorbent assay (ELISA). Recombinant Tyr p 10 showed 12.5% (5/40) IgE-binding reactivity, whereas recombinant Der f 10 showed 25% (10/40) IgE-binding reactivity against the same sera from storage mite-sensitized and house dust mite-sensitized subjects. Both recombinant Tyr p 10 and Der f 10 showed little inhibition of IgE binding to T. putrescentiae crude extract by ELISA. Tropomyosin seems to contribute only a small portion of the cross-reactivity with house dust mites.

4 Reads
  • Source
    • "Microorganisms growing on plant debris can supply the lacking nitrogen. Synanthropic mites are regarded as pests because they produce many compounds contaminating the indoor environment and cause allergic reaction in humans [5], [6]. The mites also interact and vector microorganisms of medical importance [7], [8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrophagus putrescentiae (Acari: Astigmata) and Fusarium sp. co-occur in poorly managed grain. In a laboratory experiment, mite grazing resulted in significant reduction of fungal mycelium on cultivation plates. The destruction of mycelium appeared to be a result of an interaction between the mites, fungi and associated bacteria. A laboratory experiment was performed to simulate a situation of grain multiinfested by mites and Fusarium fungi. Changes of mite-associated bacterial community in T. putrescentiae were described in 3 habitats: (i) T. putrescentiae mites from a rearing diet prior to their transfer to fungal diet; (ii) fungal mycelium before mite introduction; (iii) mites after 7 day diet of each Fusarium avenaceum, F. culmorum, F. poae and F. verticillioides. Bacterial communities were characterized by 16 S rRNA gene sequencing. In total, 157 nearly full-length 16 S rRNA gene sequences from 9 samples representing selected habitats were analyzed. In the mites, the shift from rearing to fungal diet caused changes in mite associated bacterial community. A diverse bacterial community was associated with mites feeding on F. avenaceum, while feeding on the other three Fusarium spp. led to selection of a community dominated by Bacillaceae. The work demonstrated changes of bacterial community associated with T. putrescentiae after shift to fungal diets suggesting selection for Bacillaceae species known as chitinase producers, which might participate in the fungal mycelium hydrolysis.
    PLoS ONE 10/2012; 7(10):e48429. DOI:10.1371/journal.pone.0048429 · 3.23 Impact Factor
  • Source
  • Source
    Clinical allergy and immunology 02/2008; 21:161-82.
Show more