Reduction of Clostridium Difficile and vancomycin-resistant Enterococcus contamination of environmental surfaces after an intervention to improve cleaning methods

Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, Ohio, USA. <>
BMC Infectious Diseases (Impact Factor: 2.61). 02/2007; 7(1):61. DOI: 10.1186/1471-2334-7-61
Source: PubMed


Contaminated environmental surfaces may play an important role in transmission of some healthcare-associated pathogens. In this study, we assessed the adequacy of cleaning practices in rooms of patients with Clostridium difficile-associated diarrhea (CDAD) and vancomycin-resistant Enterococcus (VRE) colonization or infection and examined whether an intervention would result in improved decontamination of surfaces.
During a 6-week period, we cultured commonly touched surfaces (i.e. bedrails, telephones, call buttons, door knobs, toilet seats, and bedside tables) in rooms of patients with CDAD and VRE colonization or infection before and after housekeeping cleaning, and again after disinfection with 10% bleach performed by the research staff. After the housekeeping staff received education and feedback, additional cultures were collected before and after housekeeping cleaning during a 10-week follow-up period.
Of the 17 rooms of patients with VRE colonization or infection, 16 (94%) had one or more positive environmental cultures before cleaning versus 12 (71%) after housekeeping cleaning (p = 0.125), whereas none had positive cultures after bleach disinfection by the research staff (p < 0.001). Of the 9 rooms of patients with CDAD, 100% had positive cultures prior to cleaning versus 7 (78%) after housekeeping cleaning (p = 0.50), whereas only 1 (11%) had positive cultures after bleach disinfection by research staff (p = 0.031). After an educational intervention, rates of environmental contamination after housekeeping cleaning were significantly reduced.
Our findings provide additional evidence that simple educational interventions directed at housekeeping staff can result in improved decontamination of environmental surfaces. Such interventions should include efforts to monitor cleaning and disinfection practices and provide feedback to the housekeeping staff.

Download full-text


Available from: Gopala Yadavalli, Dec 25, 2013
  • Source
    • "Pathogens are shed onto environmental surfaces and will remain for several days, or possibly months, if the surfaces are not effectively disinfected [1]–[6]. Unfortunately, several recent studies have demonstrated that environmental cleaning is often suboptimal in healthcare facilities [5]–[8]. Interventions such as education of housekeeping staff or use of fluorescent markers to provide feedback to housekeepers may result in improved cleaning [5]–[8]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Environmental surfaces play an important role in the transmission of healthcare-associated pathogens. Because environmental cleaning is often suboptimal, there is a growing demand for safe, rapid, and automated disinfection technologies, which has lead to a wealth of novel disinfection options available on the market. Specifically, automated ultraviolet-C (UV-C) devices have grown in number due to the documented efficacy of UV-C for reducing healthcare-acquired pathogens in hospital rooms. Here, we assessed and compared the impact of pathogen concentration, organic load, distance, and radiant dose on the killing efficacy of two analogous UV-C devices. Principal Findings The devices performed equivalently for each impact factor assessed. Irradiation delivered for 41 minutes at 4 feet from the devices consistently reduced C. difficile spores by ∼ 3 log10CFU/cm2, MRSA by>4 log10CFU/cm2, and VRE by >5 log10CFU/cm2. Pathogen concentration did not significantly impact the killing efficacy of the devices. However, both a light and heavy organic load had a significant negative impacted on the killing efficacy of the devices. Additionally, increasing the distance to 10 feet from the devices reduced the killing efficacy to ≤3 log10CFU/cm2 for MRSA and VRE and <2 log10CFU/cm2 for C.difficile spores. Delivery of reduced timed doses of irradiation particularly impacted the ability of the devices to kill C. difficile spores. MRSA and VRE were reduced by >3 log10CFU/cm2 after only 10 minutes of irradiation, while C. difficile spores required 40 minutes of irradiation to achieve a similar reduction. Conclusions The UV-C devices were equally effective for killing C. difficile spores, MRSA, and VRE. While neither device would be recommended as a stand-alone disinfection procedure, either device would be a useful adjunctive measure to routine cleaning in healthcare facilities.
    PLoS ONE 09/2014; 9(9):e107444. DOI:10.1371/journal.pone.0107444 · 3.23 Impact Factor
  • Source
    • "While they do not directly assess for the presence of pathogens, visual inspection, FM and ATP methods are easy to implement; unlike microbiologic techniques, they allow for evaluation of effectiveness immediately after PDC is performed. It has been demonstrated that the quality of environmental cleaning as measured by culture of pathogens may be improved through education of environmental services staff [4]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Published data to date have provided a limited comparison between non-microbiologic methods---particularly visual inspection---and a microbiologic comparator to evaluate the effectiveness of environmental cleaning of patient rooms. We sought to compare the accuracy of visual inspection with other non-microbiologic methods of assessing the effectiveness of post-discharge cleaning (PDC). Prospective evaluation to determine the effectiveness of PDC in comparison to a microbiologic comparator. Using a highly standardized methodology examining 15 high-touch surfaces, the effectiveness of PDC was evaluated by visual inspection, the removal of fluorescent marker (FM) placed prior to room occupancy, quantification of adenosine triphosphate (ATP) levels, and culture for aerobic colony counts (ACC). Twenty rooms including 293 surfaces were sampled in the study, including 290 surfaces sampled by all four methods. ACC demonstrated 72% of surfaces to be microbiologically clean. Visual inspection, FM, ATP demonstrated 57%, 49%, and 66% of surfaces to be clean. Using ACC as a microbiologic comparator, the sensitivity of visual inspection, FM, and ATP to detect a clean surface were 60%, 51%, and 70%, respectively; the specificity of visual inspection, FM, and ATP were 52%, 56%, and 44%. In assessing the effectiveness of PDC, there was poor correlation between the two most frequently studied commercial methods and a microbiologic comparator. Visual inspection performed at least as well as commercial methods, directly addresses patient perception of cleanliness, and is economical to implement.
    10/2013; 2(1):26. DOI:10.1186/2047-2994-2-26
  • Source
    • "Overall, 11.8% and 2.4% of surfaces in the general environment of the medical and surgical wards were contaminated with MRSA and C. difficile, respectively. In the literature, the prevalence of MRSA in the hospital environment has ranged from 0.6% to 54% [11,17,35-37] and for C. difficile the prevalence has ranged from 2.8% to 50% [14,16,21,38,39]. These wide variations in the reported prevalence of MRSA and C. difficile contamination may be attributed to different study designs, including sampling times (endemic versus outbreak settings), the presence of colonized and/or infected patients during sampling, sampling in different hospital wards, sampling pre- and post-disinfection, sampling surfaces once versus multiple times, and the use of different sampling techniques and culture methodologies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: The hospital environment has been suggested as playing an important role in the transmission of hospital-associated (HA) pathogens. However, studies investigating the contamination of the hospital environment with methicillin-resistant Staphylococcus aureus (MRSA) or Clostridium difficile have generally focused on point prevalence studies of only a single pathogen. Research evaluating the roles of these two pathogens, concurrently, in the general hospital environment has not been conducted. The objectives of this study were to determine the prevalence and identify risk factors associated with MRSA and C. difficile contamination in the general environment of three community hospitals, prospectively. Methods: Sampling of environmental surfaces distributed over the medicine and surgical wards at each hospital was conducted once a week for four consecutive weeks. Sterile electrostatic cloths were used for environmental sampling and information regarding the surface sampled was recorded. For MRSA, air sampling was also conducted. Enrichment culture was performed and spa typing was performed for all MRSA isolates. For C. difficile, isolates were characterized by ribotyping and investigated for the presence of toxin genes by PCR. Using logistic regression, the following risk factors were examined for MRSA or C. difficile contamination: type of surface sampled, surface material, surface location, and the presence/absence of the other HA pathogen under investigation. Results: Overall, 11.8% (n=612) and 2.4% (n=552) of surfaces were positive for MRSA and C. difficile, respectively. Based on molecular typing, five different MRSA strains and eight different C. difficile ribotypes, including ribotypes 027 (15.4%) and 078 (7.7%), were identified in the hospital environment. Results from the logistic regression model indicate that compared to computer keyboards, the following surfaces had increased odds of being contaminated with MRSA: chair backs, hand rails, isolation carts, and sofas. Conclusions: MRSA and C. difficile were identified from a variety of surfaces in the general hospital environment.Several surfaces had an increased risk of being contaminated with MRSA but further studies regarding contact rates, type of surface material, and the populations using these surfaces are warranted.
    BMC Infectious Diseases 11/2012; 12(1):290. DOI:10.1186/1471-2334-12-290 · 2.61 Impact Factor
Show more