Article

LIPID MAPS online tools for lipid research

LIPID MAPS Bioinformatics Core, San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92037, USA.
Nucleic Acids Research (Impact Factor: 8.81). 08/2007; 35(Web Server issue):W606-12. DOI: 10.1093/nar/gkm324
Source: PubMed

ABSTRACT The LIPID MAPS consortium has developed a number of online tools for performing tasks such as drawing lipid structures and predicting possible structures from mass spectrometry (MS) data. A simple online interface has been developed to enable an end-user to rapidly generate a variety of lipid chemical structures, along with corresponding systematic names and ontological information. The structure-drawing tools are available for six categories of lipids: (i) fatty acyls, (ii) glycerolipids, (iii) glycerophospholipids, (iv) cardiolipins, (v) sphingolipids and (vi) sterols. Within each category, the structure-drawing tools support the specification of various parameters such as chain lengths at a specific sn position, head groups, double bond positions and stereochemistry to generate a specific lipid structure. The structure-drawing tools have also been integrated with a second set of online tools which predict possible lipid structures from precursor-ion and product-ion MS experimental data. The MS prediction tools are available for three categories of lipids: (i) mono/di/triacylglycerols, (ii) glycerophospholipids and (iii) cardiolipins. The LIPID MAPS online tools are publicly available at www.lipidmaps.org/tools/.

Download full-text

Full-text

Available from: Shankar Subramaniam, May 25, 2015
1 Follower
 · 
151 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early allograft dysfunction (EAD) dramatically influences graft and patient outcome after orthotopic liver transplantation and its incidence is strongly determined by donor liver quality. Nevertheless, objective biomarkers, which can assess graft quality and anticipate organ function, are still lacking. This study aims to investigate whether there is a preoperative donor liver metabolomic biosignature associated with EAD. A comprehensive metabolomic profiling of 124 donor liver biopsies collected before transplantation was performed by mass spectrometry coupled to liquid chromatography. Donor liver grafts were classified into two groups: showing EAD and immediate graft function (IGF). Multivariate data analysis was used to search for the relationship between the metabolomic profiles present in donor livers before transplantation and their function in recipients. A set of liver graft dysfunction-associated biomarkers was identified. Key changes include significantly increased levels of bile acids, lysophospholipids, phospholipids, sphingomyelins and histidine metabolism products, all suggestive of disrupted lipid homeostasis and altered histidine pathway. Based on these biomarkers, a predictive EAD model was built and further evaluated by assessing 24 independent donor livers, yielding 91% sensitivity and 82% specificity. The model was also successfully challenged by evaluating donor livers showing primary non-function (n=4). A metabolomic biosignature that accurately differentiates donor livers, which later showed EAD or IGF, has been deciphered. The remarkable metabolomic differences among between donor livers before transplant can relate to their different quality. The proposed metabolomic approach may become a clinical tool for donor liver quality assessment and for anticipating graft function before transplant.
    Journal of Hepatology 05/2014; DOI:10.1016/j.jhep.2014.04.023 · 10.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Lipids are important compounds for human physiology and as renewable resources for fuels and chemicals. In lipid research, there is a big gap between the currently available pathway-level representations of lipids and lipid structure databases in which the number of compounds is expanding rapidly with high-throughput mass spectrometry methods. In this work, we introduce a computational approach to bridge this gap by making associations between metabolic pathways and the lipid structures discovered increasingly thorough lipidomics studies. Our approach, called NICELips (Network Integrated Computational Explorer for Lipidomics), is based on the formulation of generalized enzymatic reaction rules for lipid metabolism, and it employs the generalized rules to postulate novel pathways of lipid metabolism. It further integrates all discovered lipids in biological networks of enzymatic reactions that consist their biosynthesis and biodegradation pathways. We illustrate the utility of our approach through a case study of bis(monoacylglycero)phosphate (BMP), a biologically important glycerophospholipid with immature synthesis and catabolic route(s). Using NICELips, we were able to propose various synthesis and degradation pathways for this compound and several other lipids with unknown metabolism like BMP, and in addition several alternative novel biosynthesis and biodegradation pathways for lipids with known metabolism. NICELips has potential applications in designing therapeutic interventions for lipid-associated disorders and in the metabolic engineering of model organisms for improving the biobased production of lipid-derived fuels and chemicals.
    Metabolic Engineering 01/2014; DOI:10.1016/j.ymben.2013.12.007 · 8.26 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We aim to provide an overview of the objectives achieved by metabolomics in relation to plant-food intake, paying attention to the new biomarkers, the influence of the gut microbiota and the modifications of the human metabolome resulting. The information included will help the design and the production of further manufactured foods with interesting health effects, hence enhancing our capacity to modulate metabolic pathways through the diet.
    TrAC Trends in Analytical Chemistry 11/2013; 52:88-99. DOI:10.1016/j.trac.2013.08.002 · 6.61 Impact Factor