Article

SOS1 is the second most common Noonan gene but plays no major role in cardio-facio-cutaneous syndrome.

Journal of Medical Genetics (Impact Factor: 5.64). 11/2007; 44(10):651-6. DOI: 10.1136/jmg.2007.051276
Source: PubMed

ABSTRACT Heterozygous gain-of-function mutations in various genes encoding proteins of the Ras-MAPK signalling cascade have been identified as the genetic basis of Noonan syndrome (NS) and cardio-facio-cutaneous syndrome (CFCS). Mutations of SOS1, the gene encoding a guanine nucleotide exchange factor for Ras, have been the most recent discoveries in patients with NS, but this gene has not been studied in patients with CFCS.
We investigated SOS1 in a large cohort of patients with disorders of the NS-CFCS spectrum, who had previously tested negative for mutations in PTPN11, KRAS, BRAF, MEK1 and MEK2. Missense mutations of SOS1 were discovered in 28% of patients with NS. In contrast, none of the patients classified as having CFCS was found to carry a pathogenic sequence change in this gene.
We have confirmed SOS1 as the second major gene for NS. Patients carrying mutations in this gene have a distinctive phenotype with frequent ectodermal anomalies such as keratosis pilaris and curly hair. However, the clinical picture associated with SOS1 mutations is different from that of CFCS. These findings corroborate that, despite being caused by gain-of-function mutations in molecules belonging to the same pathway, NS and CFCS scarcely overlap genotypically.

0 Followers
 · 
141 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interpreting the genomic and phenotypic consequences of copy-number variation (CNV) is essential to understanding the etiology of genetic disorders. Whereas deletion CNVs lead obviously to haploinsufficiency, duplications might cause disease through triplosensitivity, gene disruption, or gene fusion at breakpoints. The mutational spectrum of duplications has been studied at certain loci, and in some cases these copy-number gains are complex chromosome rearrangements involving triplications and/or inversions. However, the organization of clinically relevant duplications throughout the genome has yet to be investigated on a large scale. Here we fine-mapped 184 germline duplications (14.7 kb-25.3 Mb; median 532 kb) ascertained from individuals referred for diagnostic cytogenetics testing. We performed next-generation sequencing (NGS) and whole-genome sequencing (WGS) to sequence 130 breakpoints from 112 subjects with 119 CNVs and found that most (83%) were tandem duplications in direct orientation. The remainder were triplications embedded within duplications (8.4%), adjacent duplications (4.2%), insertional translocations (2.5%), or other complex rearrangements (1.7%). Moreover, we predicted six in-frame fusion genes at sequenced duplication breakpoints; four gene fusions were formed by tandem duplications, one by two interconnected duplications, and one by duplication inserted at another locus. These unique fusion genes could be related to clinical phenotypes and warrant further study. Although most duplications are positioned head-to-tail adjacent to the original locus, those that are inverted, triplicated, or inserted can disrupt or fuse genes in a manner that might not be predicted by conventional copy-number assays. Therefore, interpreting the genetic consequences of duplication CNVs requires breakpoint-level analysis. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
    The American Journal of Human Genetics 01/2015; DOI:10.1016/j.ajhg.2014.12.017 · 10.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Noonan syndrome is an autosomal dominant, multisystemic disorder caused by dysregulation of the RAS/mitogen activated protein kinase (MAPK) pathway. Heterozygous, pathogenic variants in 11 known genes account for approximately 80% of cases. The identification of novel genes associated with Noonan syndrome has become increasingly challenging, since they might be responsible for very small fractions of the cases. A cohort of 50 Brazilian probands negative for pathogenic variants in the known genes associated with Noonan syndrome was tested through whole-exome sequencing along with the relatives in the familial cases. Families from the USA and Poland with mutations in the newly identified genes were included subsequently. We identified rare, segregating or de novo missense variants in SOS2 and LZTR1 in 4% and 8%, respectively, of the 50 Brazilian probands. SOS2 and LZTR1 variants were also found to segregate in one American and one Polish family. Notably, SOS2 variants were identified in patients with marked ectodermal involvement, similar to patients with SOS1 mutations. We identified two novel genes, SOS2 and LZTR1, associated with Noonan syndrome, thereby expanding the molecular spectrum of RASopathies. Mutations in these genes are responsible for approximately 3% of all patients with Noonan syndrome. While SOS2 is a natural candidate, because of its homology with SOS1, the functional role of LZTR1 in the RAS/MAPK pathway is not known, and it could not have been identified without the large pedigrees. Additional functional studies are needed to elucidate the role of LZTR1 in RAS/MAPK signalling and in the pathogenesis of Noonan syndrome. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
    Journal of Medical Genetics 03/2015; DOI:10.1136/jmedgenet-2015-103018 · 5.64 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Noonan syndrome (NS) and related disorders, which are now summarized under the term RASopathies, are caused by germline mutations in genes encoding protein components of the Ras/mitogen-activated protein kinase pathway. In this study, we evaluated the clinical and molecular spectrum of 21 Tunisian patients, recruited by a cardiology unit, for whom RASopathy diagnosis was suspected by clinical geneticists. Overall, 19 patients had a clinical diagnosis of NS and 2 were classified as having Cardiofaciocutaneous (CFC) syndrome. In 52% (n = 11) of patients, a RASopathy has been molecularly confirmed. Mutations in PTPN11 and SOS1 genes were found in patients with diagnosis of NS and BRAF gene mutations in patients with CFC syndrome. As reported from other cohorts, mutations in exons 3 and 8 of the PTPN11 gene predominated in Tunisian NS patients. A very uncommon PTPN11 mutation c.5C>T (p.T2I), the functional consequences of which have so far remained unclear, was identified in one patient. As biased by the mode of recruitment, all patients included in this study had a congenital heart defect, with pulmonary valve stenosis being the most frequent one. Short stature and developmental abnormalities were present in mutation-positive cases. This is the first molecular study in patients from southern Tunisia with RASopathy diagnosis.
    Molecular syndromology 05/2014; DOI:10.1159/000362898

Full-text (2 Sources)

Download
50 Downloads
Available from
Jun 3, 2014