Article

Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans.

Molecular Genetics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America.
PLoS Genetics (Impact Factor: 8.17). 07/2007; 3(6):e108. DOI: 10.1371/journal.pgen.0030108
Source: PubMed

ABSTRACT We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1(Delta18/Delta18)), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5' part of the ITPR1 gene, encompassing exons 1-10, 1-40, and 1-44 in three studied families, underlies SCA15 in humans.

0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A suite of models was developed to study the role of inositol 1,4,5-trisphosphate receptor 1 (IP3R1) in spinocerebellar ataxias (SCAs). Several SCAs are linked to reduced abundance of IP3R1 or to supranormal sensitivity of the receptor to activation by its ligand inositol 1,4,5-trisphosphate (IP3). Detailed multidimensional models have been created to simulate biochemical calcium signaling and membrane electrophysiology in cerebellar Purkinje neurons. In these models, IP3R1-mediated calcium release is allowed to interact with ion channel response on the cell membrane. Experimental findings in mice and clinical observations in humans provide data input for the models. The SCA modeling suite helps interpret experimental results and provides suggestions to guide experiments. The models predict IP3R1 supersensitivity in SCA1 and compensatory mechanisms in SCA1, SCA2, and SCA3. Simulations explain the impact of calcium buffer proteins. Results show that IP3R1-mediated calcium release activates voltage-gated calcium-activated potassium channels in the plasma membrane. The SCA modeling suite unifies observations from experiments in a number of SCAs. The cadre of simulations demonstrates the central role of IP3R1.
    Frontiers in Neuroscience 01/2014; 8:453. DOI:10.3389/fnins.2014.00453
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the inositol 1,4,5-triphosphate receptor type 1 gene (ITPR1) have been identified in families with early-onset spinocerebellar ataxia type 29 (SCA29) and late-onset SCA15, but have not been found in sporadic infantile-onset cerebellar ataxia. We examined if mutations of ITPR1 are also involved in sporadic infantile-onset SCA. Sixty patients with childhood-onset cerebellar atrophy of unknown etiology and their families were examined by whole-exome sequencing. We found de novo heterozygous ITPR1 missense mutations in four unrelated patients with sporadic infantile-onset, nonprogressive cerebellar ataxia. Patients displayed nystagmus, tremor, and hypotonia from very early infancy. Nonprogressive ataxia, motor delay, and mild cognitive deficits were common clinical findings. Brain magnetic resonance imaging revealed slowly progressive cerebellar atrophy. ITPR1 missense mutations cause infantile-onset cerebellar ataxia. ITPR1-related SCA includes sporadic infantile-onset cerebellar ataxia as well as SCA15 and SCA29.
    Journal of Neurology 03/2015; DOI:10.1007/s00415-015-7705-8 · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hereditary ataxia, or motor incoordination, affects approximately 150,000 Americans and hundreds of thousands of individuals worldwide with onset from as early as mid-childhood. Affected individuals exhibit dysarthria, dysmetria, action tremor, and diadochokinesia. In this review, we consider an array of computational studies derived from experimental observations relevant to human neuropathology. A survey of related studies illustrates the impact of integrating clinical evidence with data from mouse models and computational simulations. Results from these studies may help explain findings in mice, and after extensive laboratory study, may ultimately be translated to ataxic individuals. This inquiry lays a foundation for using computation to understand neurobiochemical and electrophysiological pathophysiology of spinocerebellar ataxias and may contribute to development of therapeutics. The interdisciplinary analysis suggests that computational neurobiology can be an important tool for translational neurology.
    Frontiers in Neuroscience 01/2015; 9:1. DOI:10.3389/fnins.2015.00001

Full-text (2 Sources)

Download
66 Downloads
Available from
Jun 2, 2014