Article

Matrix and Steiner-triple-system smart pooling assays for high-performance transcription regulatory network mapping.

Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
Nature Methods (Impact Factor: 23.57). 09/2007; 4(8):659-64. DOI: 10.1038/nmeth1063
Source: PubMed

ABSTRACT Yeast one-hybrid (Y1H) assays provide a gene-centered method for the identification of interactions between gene promoters and regulatory transcription factors (TFs). To date, Y1H assays have involved library screens that are relatively expensive and laborious. We present two Y1H strategies that allow immediate prey identification: matrix assays that use an array of 755 individual Caenorhabditis elegans TFs, and smart-pool assays that use TF multiplexing. Both strategies simplify the Y1H pipeline and reduce the cost of protein-DNA interaction identification. We used a Steiner triple system (STS) to create smart pools of 4-25 TFs. Notably, we uniplexed a small number of highly connected TFs to allow efficient assay deconvolution. Both strategies outperform library screens in terms of coverage, confidence and throughput. These versatile strategies can be adapted both to TFs in other systems and, likely, to other biomolecules and assays as well.

0 Bookmarks
 · 
127 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: A rigorous analysis of transcriptional regulation at the DNA level is crucial to the understanding of many biological systems. Mathematical modeling has offered researchers a new approach to understanding this central process. In particular, thermodynamic-based modeling represents the most biophysically informed approach aimed at connecting DNA level regulatory sequences to the expression of specific genes. The goal of this review is to give biologists a thorough description of the steps involved in building, analyzing, and implementing a thermodynamic-based model of transcriptional regulation. The data requirements for this modeling approach are described, the derivation for a specific regulatory region is shown, and the challenges and future directions for the quantitative modeling of gene regulation are discussed.
    Biochimica et Biophysica Acta 05/2013; · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genome-wide association studies have identified hundreds of genetic variants associated with complex diseases although most variants identified so far explain only a small proportion of heritability, suggesting that rare variants are responsible for missing heritability. Identification of rare variants through large-scale resequencing becomes increasing important but still prohibitively expensive despite the rapid decline in the sequencing costs. Nevertheless, group testing based overlapping pool sequencing in which pooled rather than individual samples are sequenced will greatly reduces the efforts of sample preparation as well as the costs to screen for rare variants. Here, we proposed an overlapping pool sequencing to screen rare variants with optimal sequencing depth and a corresponding cost model. We formulated a model to compute the optimal depth for sufficient observations of variants in pooled sequencing. Utilizing shifted transversal design algorithm, appropriate parameters for overlapping pool sequencing could be selected to minimize cost and guarantee accuracy. Due to the mixing constraint and high depth for pooled sequencing, results showed that it was more cost-effective to divide a large population into smaller blocks which were tested using optimized strategies independently. Finally, we conducted an experiment to screen variant carriers with frequency equaled 1%. With simulated pools and publicly available human exome sequencing data, the experiment achieved 99.93% accuracy. Utilizing overlapping pool sequencing, the cost for screening variant carriers with frequency equaled 1% in 200 diploid individuals dropped to at least 66% at which target sequencing region was set to 30 Mb.
    Genetic Epidemiology 10/2013; · 4.02 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene duplication results in two identical paralogs that diverge through mutation, leading to loss or gain of interactions with other biomolecules. Here, we comprehensively characterize such network rewiring for C. elegans transcription factors (TFs) within and across four newly delineated molecular networks. Remarkably, we find that even highly similar TFs often have different interaction degrees and partners. In addition, we find that most TF families have a member that is highly connected in multiple networks. Further, different TF families have opposing correlations between network connectivity and phylogenetic age, suggesting that they are subject to different evolutionary pressures. Finally, TFs that have similar partners in one network generally do not in another, indicating a lack of pressure to retain cross-network similarity. Our multiparameter analyses provide unique insights into the evolutionary dynamics that shaped TF networks.
    Molecular cell 06/2013; · 14.61 Impact Factor