NUP98-NSD1 links H3K36 methylation to Hox-A gene activation and leukaemogenesis.

Department of Pathology, University of California at San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
Nature Cell Biology (Impact Factor: 20.06). 08/2007; 9(7):804-12. DOI: 10.1038/ncb1608
Source: PubMed

ABSTRACT Nuclear receptor-binding SET domain protein 1 (NSD1) prototype is a family of mammalian histone methyltransferases (NSD1, NSD2/MMSET/WHSC1, NSD3/WHSC1L1) that are essential in development and are mutated in human acute myeloid leukemia (AML), overgrowth syndromes, multiple myeloma and lung cancers. In AML, the recurring t(5;11)(q35;p15.5) translocation fuses NSD1 to nucleoporin-98 (NUP98). Here, we present the first characterization of the transforming properties and molecular mechanisms of NUP98-NSD1. We demonstrate that NUP98-NSD1 induces AML in vivo, sustains self-renewal of myeloid stem cells in vitro, and enforces expression of the HoxA7, HoxA9, HoxA10 and Meis1 proto-oncogenes. Mechanistically, NUP98-NSD1 binds genomic elements adjacent to HoxA7 and HoxA9, maintains histone H3 Lys 36 (H3K36) methylation and histone acetylation, and prevents EZH2-mediated transcriptional repression of the Hox-A locus during differentiation. Deletion of the NUP98 FG-repeat domain, or mutations in NSD1 that inactivate the H3K36 methyltransferase activity or that prevent binding of NUP98-NSD1 to the Hox-A locus precluded both Hox-A gene activation and myeloid progenitor immortalization. We propose that NUP98-NSD1 prevents EZH2-mediated repression of Hox-A locus genes by colocalizing H3K36 methylation and histone acetylation at regulatory DNA elements. This report is the first to link deregulated H3K36 methylation to tumorigenesis and to link NSD1 to transcriptional regulation of the Hox-A locus.

1 Bookmark
  • Biosemiotics 08/2014; 7(2):203-222. · 0.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Overexpression of the histone methyltransferase MMSET in t(4;14)+ multiple myeloma patients is believed to be the driving factor in the pathogenesis of this subtype of myeloma. MMSET catalyzes dimethylation of lysine 36 on histone H3 (H3K36me2), and its overexpression causes a global increase in H3K36me2, redistributing this mark in a broad, elevated level across the genome. Here, we demonstrate that an increased level of MMSET also induces a global reduction of lysine 27 trimethylation on histone H3 (H3K27me3). Despite the net decrease in H3K27 methylation, specific genomic loci exhibit enhanced recruitment of the EZH2 histone methyltransferase and become hypermethylated on this residue. These effects likely contribute to the myeloma phenotype since MMSET-overexpressing cells displayed increased sensitivity to EZH2 inhibition. Furthermore, we demonstrate that such MMSET-mediated epigenetic changes require a number of functional domains within the protein, including PHD domains that mediate MMSET recruitment to chromatin. In vivo, targeting of MMSET by an inducible shRNA reversed histone methylation changes and led to regression of established tumors in athymic mice. Together, our work elucidates previously unrecognized interplay between MMSET and EZH2 in myeloma oncogenesis and identifies domains to be considered when designing inhibitors of MMSET function.
    PLoS Genetics 09/2014; 10(9):e1004566. · 8.17 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Histone lysine methylation has a pivotal role in regulating the chromatin. Histone modifiers, including histone methyl transferases (HMTases), have clear roles in human carcinogenesis but the extent of their functions and regulation are not well understood. The NSD family of HMTases comprised of three members (NSD1, NSD2/MMSET/WHSC1, and NSD3/WHSC1L) are oncogenes aberrantly expressed in several cancers, suggesting their potential to serve as novel therapeutic targets. However, the substrate specificity of the NSDs and the molecular mechanism of histones H3 and H4 recognition and methylation have not yet been established.ResultsHerein, we investigated the in vitro mechanisms of histones H3 and H4 recognition and modifications by the catalytic domain of NSD family members. In this study, we quantified in vitro mono-, di- and tri- methylations on H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20 by the carboxyl terminal domain (CTD) of NSD1, NSD2 and NSD3, using histone as substrate. Next, we used a molecular modelling approach and docked 6-mer peptides H3K4 a.a.1-7; H3K9 a.a.5-11; H3K27 a.a.23-29; H3K36 a.a.32-38; H3K79 a.a.75-81; H4K20 a.a.16-22 with the catalytic domain of the NSDs to provide insight into lysine-marks recognition and methylation on histones H3 and H4.Conclusions Our data highlight the versatility of NSD1, NSD2, and NSD3 for recognizing and methylating several histone lysine marks on histones H3 and H4. Our work provides a basis for designing selective and specific NSDs inhibitors. We discuss the relevance of our findings for the development of NSD inhibitors amenable for novel chemotherapies.
    BMC Structural Biology 12/2014; 14(1):25. · 2.22 Impact Factor


Available from
Jan 23, 2015