Impaired lymphoid chemokine-mediated migration due to a block on the chemokine receptor switch in human cytomegalovirus-infected dendritic cells.

Section of Infection and Immunity. Department of Medicine, University of Wales College of Medicine, Cardiff, United Kingdom.
Journal of Virology (Impact Factor: 5.08). 04/2004; 78(6):3046-54. DOI: 10.1128/JVI.78.6.3046-3054.2004
Source: PubMed

ABSTRACT Dendritic cell (DC) migration from the site of infection to the site of T-cell priming is a crucial event in the generation of antiviral T-cell responses. Here we present to our knowledge the first functional evidence that human cytomegalovirus (HCMV) blocks the migration of infected monocyte-derived DCs toward lymphoid chemokines CCL19 and CCL21. DC migration is blocked by viral impairment of the chemokine receptor switch at the level of the expression of CCR7 molecules. The inhibition occurs with immediate-early-early kinetics, and viral interference with NF-kappaB signaling is likely to be at least partially responsible for the lack of CCR7 expression. DCs which migrate from the infected cultures are HCMV antigen negative, and consequently they do not stimulate HCMV-specific CD8(+) T cells, while CD4(+)-T-cell activation is not impaired. Although CD8(+) T cells can also be activated by alternative antigen presentation mechanisms, the spatial segregation of naive T cells and infected DCs seems a potent mechanism of delaying the generation of primary CD8(+)-T-cell responses and aiding early viral spread.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cytomegalovirus (CMV) is a ubiquitous DNA virus that causes severe disease in patients with immature or impaired immune systems. During active infection, CMV modulates host immunity, and CMV-infected patients often develop signs of immune dysfunction, such as immunosuppression and autoimmune phenomena. Furthermore, active viral infection has been observed in several autoimmune diseases, and case reports have linked primary CMV infection and the onset of autoimmune disorders. In addition, CMV infection promotes allograft rejection and graft-versus-host disease in solid organ and bone marrow transplant recipients, respectively, further implicating CMV in the genesis and maintenance of immunopathological phenomena. The mechanisms by which CMV could induce inhibition of host defense, inflammation, and autoimmunity are discussed, as is the treatment of virus-induced immunopathology with antivirals.
    Herpesviridae. 01/2011; 2(1):6.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human cytomegalovirus (HCMV), a member of the herpesvirus family, establishes life-long persistence and latency after primary infection and can be reactivated later in life. In immunosuppressed patients, it is an important pathogen that can cause severe disease. HCMV is also thought to play a causative role in inflammatory diseases and cancer. The virus can infect different immune cells, including dendritic cells (DCs) and can take advantage of host immune functions to avoid immune recognition. These characteristics have sparked major interest in understanding HCMV and its interaction with immune cells and their relevance to disease pathogenesis. In this review, we focus on the complex host-pathogen relationship between HCMV and DCs, including the persistence of the virus in these cells, their function in the immune response to HCMV infection and the potential clinical consequences of HCMV infection in DCs.
    Virulence 10/2012; 3(7). · 2.79 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human respiratory syncytial virus (HRSV) and, to a lesser extent, human metapneumovirus (HMPV) and human parainfluenza virus type 3 (HPIV3), can re-infect symptomatically throughout life without significant antigenic change, suggestive of incomplete or short-lived immunity. In contrast, re-infection by influenza A virus (IAV) largely depends on antigenic change, suggestive of more complete immunity. Antigen presentation by dendritic cells (DC) is critical in initiating the adaptive immune response. Antigen uptake by DC induces maturational changes that include decreased expression of the chemokine receptors CCR1, CCR2, and CCR5 that maintain DC residence in peripheral tissues, and increased expression of CCR7 that mediates the migration of antigen-bearing DC to lymphatic tissue. We stimulated human monocyte-derived DC (MDDC) with virus and found that, in contrast to HPIV3 and IAV, HMPV and HRSV did not efficiently decrease CCR1, 2, and 5 expression, and did not efficiently increase CCR7 expression. Consistent with the differences in CCR7 mRNA and protein expression, MDDC stimulated with HRSV or HMPV migrated less efficiently to the CCR7 ligand CCL19 than did IAV-stimulated MDDC. Using GFP-expressing recombinant virus, we showed that the subpopulation of MDDC that was robustly infected with HRSV was particularly inefficient in chemokine receptor modulation. HMPV- or HRSV-stimulated MDDC responded to secondary stimulation with bacterial lipopolysaccharide or with a cocktail of proinflammatory cytokines by increasing CCR7 and decreasing CCR1, 2 and 5 expression, and by more efficient migration to CCL19, suggesting that HMPV and HRSV suboptimally stimulate rather than irreversibly inhibit MDDC migration. This also suggests that the low concentration of proinflammatory cytokines released from HRSV- and HMPV-stimulated MDDC is partly responsible for the low CCR7-mediated migration. We propose that inefficient migration of HRSV- and HMPV-stimulated DC to lymphatic tissue contributes to reduced adaptive responses to these viruses.
    PLoS Pathogens 06/2011; 7(6):e1002105. · 8.14 Impact Factor

Full-text (3 Sources)

Available from
Jun 6, 2014