Expression of functional soluble human leucocyte antigen-G molecules in lymphoproliferative disorders.

UPRES Immunologie Hématologie, Université de Rennes 1, Rennes, France.
British Journal of Haematology (Impact Factor: 4.96). 08/2007; 138(2):202-12. DOI: 10.1111/j.1365-2141.2007.06647.x
Source: PubMed

ABSTRACT Membrane-bound and soluble human leucocyte antigen-G (sHLA-G) molecules display immunotolerant properties favouring tumour cell escape from immune surveillance. sHLA-G molecules have been detected in several tumour pathologies; this study aimed to evaluate sHLA-G expression in lymphoproliferative disorders. sHLA-G plasma level was significantly increased in 110 of 178 newly diagnosed lymphoid proliferations cases i.e. 59% of chronic lymphocytic leukaemia, 65% of B non-Hodgkin lymphomas (NHL) and 58% of T-NHL. To assess the mechanisms involved in this secretion, the differential effect of cytokines was tested in in vitro cultures of NHL cells. A significant induction of sHLA-G level was shown in T-NHL in contrast with B-NHL and normal equivalent cells, after cytokine stimulation with (i) interferongamma (IFNgamma), interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor, (ii) IL-10 and (iii) transforming growth factor beta. An impact of microenvironment on sHLA-G expression was found in B-NHL as shown by the in vitro effect of addition of normal monocytes. Finally, a functional effect of sHLA-G molecules purified from pathologic plasma was demonstrated by their strong capacity to inhibit T-cell proliferation at concentrations currently observed during these disorders. These results suggest that functional sHLA-G molecules are upregulated in lymphoproliferative disorders which can support their potential immunomodulatory role during this pathology.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human leukocyte antigen-G (HLA-G) is a non-classical HLA class I molecule that differs from classical HLA class I molecules by low polymorphism and tissue distribution. HLA-G is a tolerogenic molecule with an immune-modulatory and anti-inflammatory function on both innate and adaptative immunity. This peculiar characteristic of HLA-G has led to investigations of its role in pathological conditions in order to define possible uses in diagnosis, prevention and treatment. In recent years, HLA-G has been shown to have an important implication in different inflammatory and autoimmune diseases, pregnancy complications, tumor development and aggressiveness, and susceptibility to viral infections. In fact, HLA-G molecules have been reported to alternate at both genetic and protein level in different disease situations, supporting its crucial role in pathological conditions. Specific pathologies show altered levels of soluble (s)HLA-G and different HLA-G gene polymorphisms seem to correlate with disease. This review aims to update scientific knowledge on the contribution of HLA-G in managing pathological conditions.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The role of HLA-G is extensively studied in cancer due to its inhibition of the immune response. Several polymorphisms in the HLA-G gene have been reported to significantly affect its expression. We, therefore, investigated whether functionally relevant HLA-G polymorphisms, HLA-G-725C/G/T, and HLA-G 14-base pair, have any influence on the susceptibility to diffuse large B-cell lymphoma (DLBCL) and its clinical course. The polymorphisms were genotyped in 207 previously untreated patients with DLBCL and 150 unrelated controls. A significant difference in genotype distribution of HLA-G polymorphic genotypes between the patients and controls was found. The frequencies of the HLA-G−725GG or the HLA-G−725GC genotype were lower, and those of the HLA-G ins/ins genotype were higher in the patients compared with the controls. Patients carrying the HLA-G-725CC genotype presented a higher probability of overall survival (OS) than subjects with other genotype combinations of HLA-G-725C/G/T (P = 0.003). The homozygous HLA-G del/del had a lower probability of OS than subjects carrying the HLA-G deletion/insertion (del/ins) or the HLA-G ins/ins genotype (P = 0.009). Two HLA-G genotype-based risk groups were defined according to the genotype distribution. The high-risk (HR) group presented a shorter OS than low-risk (LR) patients (P = 0.001). In a multivariate analysis adjusted for International Prognostic Index (IPI) factors, both the intermediate high/high IPI-risk group (P < 0.0001) and the HR genotype group (P = 0.004) independently increased the risk of death. This is the first study indicating an important role of HLA-G polymorphisms for the clinical course of DLBCL. The potential influence of HLA-G polymorphisms on the susceptibility to DLBCL thus deserves further study. © 2015 Wiley Periodicals, Inc.
    Genes Chromosomes and Cancer 03/2015; 54(3). DOI:10.1002/gcc.22235 · 3.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While persistent infection with oncogenic types of human Papillomavirus (HPV) is required for cervical epithelial cell transformation and cervical carcinogenesis, HPV infection alone is not sufficient to induce tumorigenesis. Only a minor fraction of HPV infections produce high-grade lesions and cervical cancer, suggesting complex host-virus interactions. Based on its pronounced immunoinhibitory properties, human leukocyte antigen (HLA)-G has been proposed as a possible prognostic biomarker and therapeutic target relevant in a wide variety of cancers and viral infections, but to date remains underexplored in cervical cancer. Given the possible influence of HLA-G on the clinical course of HPV infection, cervical lesions and cancer progression, a better understanding of HLA-G involvement in cervical carcinogenesis might contribute to two aspects of fundamental importance: 1. Characterization of a novel diagnostic/prognostic biomarker to identify cervical cancer and to monitor disease stage, critical for patient screening; 2. Identification of HLA-G-driven immune mechanisms involved in lesion development and cancer progression, leading to the development of strategies for modulating HLA-G expression for treatment purposes. Thus, this systematic review explores the potential involvement of HLA-G protein expression and polymorphisms in cervical carcinogenesis. Copyright © 2014. Published by Elsevier B.V.
    Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 10/2014; 1846(2):576-589. DOI:10.1016/j.bbcan.2014.10.004 · 7.58 Impact Factor