Three-body contribution to the helium interaction potential.

Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA.
The Journal of Physical Chemistry A (Impact Factor: 2.77). 12/2007; 111(44):11311-9. DOI: 10.1021/jp072106n
Source: PubMed

ABSTRACT Two nonadditive three-body analytic potentials for helium were obtained: one based on three-body symmetry-adapted perturbation theory (SAPT) and the other one on supermolecular coupled-cluster theory with single, double, and noniterative triple excitations [CCSD(T)]. Large basis sets were used, up to the quintuple-zeta doubly augmented size. The fitting functions contain an exponentially decaying component describing the short-range interactions and damped inverse powers expansions for the third- and fourth-order dispersion contributions. The SAPT and CCSD(T) potentials are very close to each other. The largest uncertainty of the potentials comes from the truncation of the level of theory and can be estimated to be about 10 mK or 10% at trimer's minimum configuration. The relative uncertainties for other configurations are also expected to be about 10% except for regions where the nonadditive contribution crosses zero. Such uncertainties are of the same order of magnitude as the current uncertainties of the two-body part of the potential.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The three-body nonadditive interaction energy between argon atoms was calculated at 300 geometries using coupled cluster methods up to single, double, triple, and noniterative quadruple excitations [CCSDT(Q)], and including the core correlation and relativistic effects. The uncertainty of the calculated energy was estimated at each geometry. The analytic potential fitted to the energies is currently the most accurate three-body argon potential. Values of the third virial coefficient C(T), corrected for quantum effects, were computed from 80 K to 10000 K by a path-integral Monte Carlo method. The calculation made use of an existing high-quality pair potential [Patkowski, K.; Szalewicz, K.; J. Chem. Phys. 2010, 133, 094304] and the three-body potential derived in the present work. Uncertainties in the potential were propagated to estimate uncertainties in C(T). The results were compared with available experimental data, including some values of C(T) newly derived in this work from previously published high-accuracy density measurements. Our results are generally consistent with the available experimental data in the limited range of temperatures where data exist, but at many conditions, especially at higher temperatures, the uncertainties of our calculated values are smaller than the uncertainties of the experimental values.
    The Journal of Physical Chemistry A 05/2013; · 2.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this article, we present the extension of the exchange-hole dipole moment model (XDM) of dispersion interactions to the calculation of two-body and three-body dispersion energy terms to any order, 2(l)-pole oscillator strengths, and polarizabilities. By using the newly-formulated coefficients, we study the relative importance of the higher-order two-body and the leading non-additive three-body (triple-dipole) interactions in gas-phase as well as in condensed systems. We show that the two-body terms up to R(-10), but not the terms of higher-order, are essential in the correct description of the dispersion energy, while there are a number of difficulties related to the choice of the damping function, which precludes the use three-body triple-dipole contributions in XDM. We conclude that further study is required before the three-body term can be used in production XDM density-functional calculations and point out the salient problems regarding its use.
    The Journal of Chemical Physics 02/2013; 138(5):054103. · 3.12 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A new rigid-monomer three-body potential has been developed for water by fitting it to more than 70 thousand trimer interaction energies computed ab initio using coupled-cluster methods and augmented triple-zeta-quality basis sets. This potential was used together with a modified form of a previously developed two-body potential and with a polarization model of four- and higher-body interactions to predict the energetics of the water trimer, hexamer, and 24-mer. Despite using the rigid-monomer approximation, these predictions agree better with flexible-monomer benchmarks than published results obtained with flexible-monomer force fields. An unexpected finding of our work is that simple polarization models predict four-body interactions to within a few percent, whereas for three-body interactions these models are known to have errors on the order of 50%.
    The Journal of chemical physics. 05/2014; 140(19):194101.