Article

Heterogenic loss of the wild-type BRCA allele in human breast tumorigenesis.

Department of Surgery, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
Annals of Surgical Oncology (Impact Factor: 3.94). 10/2007; 14(9):2510-8. DOI: 10.1245/s10434-007-9372-1
Source: PubMed

ABSTRACT For individuals genetically predisposed to breast and ovarian cancer through inheritance of a mutant BRCA allele, somatic loss of heterozygosity affecting the wild-type allele is considered obligatory for cancer initiation and/or progression. However, several lines of evidence suggest that phenotypic effects may result from BRCA haploinsufficiency.
Archival fixed and embedded tissue specimens from women with germ line deleterious mutations in BRCA1 or BRCA2 were identified. After pathologic review, focal areas of normal breast epithelium, atypical ductal hyperplasia, ductal carcinoma-in-situ, and invasive ductal carcinoma were identified from 14 BRCA1-linked and 9 BRCA2-linked breast cancers. Ten BRCA-linked prophylactic mastectomy specimens and 12 BRCA-linked invasive ovarian carcinomas were also studied. Laser catapult microdissection was used to isolate cells from the various pathologic lesions and corresponding normal tissues. After DNA isolation, real-time polymerase chain reaction assays were used to quantitate the proportion of wild-type to mutant BRCA alleles in each tissue sample.
Quantitative allelotyping of microdissected cells revealed a high level of heterogeneity in loss of heterozygosity within and between preinvasive lesions and invasive cancers from BRCA1 and BRCA2 heterozygotes with breast cancer. In contrast, all BRCA-associated ovarian cancers displayed complete loss of the wild-type BRCA allele.
These data suggest that loss of the wild-type BRCA allele is not required for BRCA-linked breast tumorigenesis, which would have important implications for the genetic mechanism of BRCA tumor suppression and for the clinical management of this patient population.

0 Bookmarks
 · 
140 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The assessment of BRCA1 and BRCA2 coding sequences to identify pathogenic mutations associated with inherited breast/ovarian cancer syndrome has provided a method to identify high-risk individuals, allowing them to seek preventative treatments and strategies. However, the current test is expensive, and cannot differentiate between pathogenic variants and those that may be benign. Focusing only on one of the two BRCA partners, we have developed a biological assay for haploinsufficiency of BRCA1. Using a series of EBV-transformed cell lines, we explored gene expression patterns in cells that were BRCA1 wildtype compared to those that carried (heterozygous) BRCA1 pathogenic mutations. We identified a subset of 43 genes whose combined expression pattern is a sensitive predictor of BRCA1 status. The gene set was disproportionately made up of genes involved in cellular differentiation, lending credence to the hypothesis that single copy loss of BRCA1 function may impact differentiation, rendering cells more susceptible to undergoing malignant processes.
    PLoS ONE 06/2014; 9(6):e100068. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platinum drugs and PARP inhibitors ("PARPis") are considered to be effective in BRCA-associated cancers with impaired DNA repair. These agents cause stalled and collapsed replication forks and create double-strand breaks effectively in the absence of repair mechanisms, resulting in arrest of the cell cycle and induction of cell death. However, recent studies have shown failure of these chemotherapeutic agents due to emerging drug resistance. In this study, we developed a stochastic model of BRCA-associated cancer progression in which there are four cancer populations: those with (i) functional BRCA, (ii) dysfunctional BRCA, (iii) functional BRCA and a growth advantage, and (iv) dysfunctional BRCA and a growth advantage. These four cancer populations expand from one cancer cell with normal repair function until the total cell number reaches a detectable amount. We derived formulas for the probability and expected numbers of each population at the time of detection. Furthermore, we extended the model to consider the tumor dynamics during treatment. Results from the model were validated and showed good agreement with clinical and experimental evidence in BRCA-associated cancers. Based on the model, we investigated conditions in which drug resistance during the treatment course originated from either a pre-existing drug-resistant population or a de novo population, due to secondary mutations. Finally, we found that platinum drugs and PARPis were effective if (i) BRCA inactivation is present, (ii) the cancer was diagnosed early, and (iii) tumor growth is rapid. Our results indicate that different types of cancers have a preferential way of acquiring resistance to platinum drugs and PARPis according to their growth and mutational characteristics.
    PLoS ONE 08/2014; 9(8):e105724. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 17 double heterozygous (DH) breast cancer (BC) patients were identified upon the analysis of 5,391 affected women for recurrent Slavic mutations in BRCA1, CHEK2, NBN/NBS1, ATM, and BLM genes. Double heterozygosity was found for BRCA1 and BLM (4 patients), BRCA1 and CHEK2 (4 patients), CHEK2 and NBS1 (3 patients), BRCA1 and ATM (2 patients), CHEK2 and BLM (2 patients), CHEK2 and ATM (1 patient), and NBS1 and BLM (1 patient). DH BC patients were on average not younger than single mutation carriers and did not have an excess of bilateral BC; an additional non-breast tumor was documented in two BRCA1/BLM DH patients (ovarian cancer and lymphoplasmacytic lymphoma). Loss-of-heterozygosity (LOH) analysis of involved genes was performed in 5 tumors, and revealed a single instance of somatic loss of the wild-type allele (LOH at CHEK2 locus in BRCA1/CHEK2 double heterozygote). Distribution of mutations in patients and controls favors the hypothesis on multiplicative interaction between at least some of the analyzed genes. Other studies on double heterozygosity for BC-predisposing germ-line mutations are reviewed.
    Breast Cancer Research and Treatment 05/2014; · 4.47 Impact Factor