Article

The helix-coil transition revisited.

Department of Macromolecular Science, Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China.
Proteins Structure Function and Bioinformatics (Impact Factor: 3.34). 11/2007; 69(1):58-68. DOI: 10.1002/prot.21492
Source: PubMed

ABSTRACT In this article, we perform a dynamic Monte Carlo simulation study of the helix-coil transition by using a bond-fluctuation lattice model. The results of the simulations are compared with those predicted by the Zimm-Bragg statistical thermodynamic theory with propagation and nucleation parameters determined from simulation data. The Zimm-Bragg theory provides a satisfactory description of the helix-coil transition of a homopolypeptide chain of 32 residues (N = 32). For such a medium-length chain, however, the analytical equation based on a widely-used large-N approximation to the Zimm-Bragg theory is not suitable to predict the average length of helical blocks at low temperatures when helicity is high. We propose an analytical large-eigenvalue (lambda) approximation. The new equation yields a significantly improved agreement on the average helix-block length with the original Zimm-Bragg theory for both medium and long chain lengths in the entire temperature range. Nevertheless, even the original Zimm-Bragg theory does not provide an accurate description of helix-coil transition for longer chains. We assume that the single-residue nucleation of helix formation as suggested in the original Zimm-Bragg model might be responsible for this deviation. A mechanism of nucleation by a short helical block is proposed by us and provides a significantly improved agreement with our simulation data.

0 Bookmarks
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report circular dichroism measurements on the helix-coil transition of poly(L-glutamic acid) in solution with polyethylene glycol (PEG) as a crowding agent. The PEG solutions have been characterized by small angle neutron scattering and are well described by the picture of a network of mesh size ξ, usual for semi-dilute chains in good solvent. We show that the increase of PEG concentration stabilizes the helices and increases the transition temperature. But more unexpectedly, we also notice that the increase of concentration of crowding agent reduces the mean helix extent at the transition, or in other words reduces its cooperativity. This result cannot be taken into account for by an entropic stabilization mechanism. Comparing the mean length of helices at the transition and the mesh size of the PEG network, our results strongly suggest two regimes: helices shorter or longer than the mesh size.
    The Journal of Chemical Physics 06/2012; 136(21):215101. · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To explore the role of non-native interactions in the helix-coil transition, a detailed comparison between a Gō-like model and a non-Gō model has been performed via lattice Monte Carlo simulations. Only native hydrogen bonding interactions occur in the Gō-like model, and the non-native ones with sequence interval more than 4 is also included into the non-Gō model. Some significant differences between the results from those two models have been found. The non-native hydrogen bonds were found most populated at temperature around the helix-coil transition. The rearrangement of non-native hydrogen bonds into native ones in the formation of alpha-helix leads to the increase of susceptibility of chain conformation, and even two peaks of susceptibility of radius of gyration versus temperature exist in the case of non-Gō model for a non-short peptide, while just a single peak exists in the case of Gō model for a single polypeptide chain with various chain lengths. The non-native hydrogen bonds have complicated the temperature-dependence of Zimm-Bragg nucleation constant. The increase of relative probability of non-native hydrogen bonding for long polypeptide chains leads to non-monotonous chain length effect on the transition temperature.
    Proteins Structure Function and Bioinformatics 07/2010; 78(9):2090-100. · 3.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Protein aggregation is an important field of investigation because it is closely related to the problem of neurodegenerative diseases, to the development of biomaterials, and to the growth of cellular structures such as cyto-skeleton. Self-aggregation of protein amyloids, for example, is a complicated process involving many species and levels of structures. This complexity, however, can be dealt with using statistical mechanical tools, such as free energies, partition functions, and transfer matrices. In this article, we review general strategies for studying protein aggregation using statistical mechanical approaches and show that canonical and grand canonical ensembles can be used in such approaches. The grand canonical approach is particularly convenient since competing pathways of assembly and dis-assembly can be considered simultaneously. Another advantage of using statistical mechanics is that numerically exact solutions can be obtained for all of the thermodynamic properties of fibrils, such as the amount of fibrils formed, as a function of initial protein concentration. Furthermore, statistical mechanics models can be used to fit experimental data when they are available for comparison.
    International Journal of Molecular Sciences 01/2013; 14(9):17420-52. · 2.46 Impact Factor

Full-text (2 Sources)

View
48 Downloads
Available from
May 17, 2014