Dual E1 activation systems for ubiquitin differentially regulate E2 enzyme charging.

Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts 02115, USA.
Nature (Impact Factor: 42.35). 07/2007; 447(7148):1135-8. DOI: 10.1038/nature05902
Source: PubMed

ABSTRACT Modification of proteins with ubiquitin or ubiquitin-like proteins (UBLs) by means of an E1-E2-E3 cascade controls many signalling networks. Ubiquitin conjugation involves adenylation and thioesterification of the carboxy-terminal carboxylate of ubiquitin by the E1-activating enzyme Ube1 (Uba1 in yeast), followed by ubiquitin transfer to an E2-conjugating enzyme through a transthiolation reaction. Charged E2s function with E3s to ubiquitinate substrates. It is currently thought that Ube1/Uba1 is the sole E1 for charging of E2s with ubiquitin in animals and fungi. Here we identify a divergent E1 in vertebrates and sea urchin, Uba6, which specifically activates ubiquitin but not other UBLs in vitro and in vivo. Human Uba6 and Ube1 have distinct preferences for E2 charging in vitro, and their specificity depends in part on their C-terminal ubiquitin-fold domains, which recruit E2s. In tissue culture cells, Uba6 is required for charging a previously uncharacterized Uba6-specific E2 (Use1), whereas Ube1 is required for charging the cell-cycle E2s Cdc34A and Cdc34B. Our data reveal unexpected complexity in the pathways that control the conjugation of ubiquitin, in which dual E1s orchestrate the charging of distinct cohorts of E2s.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Uba6-Use1 ubiquitin enzyme cascade is a poorly understood arm of the ubiquitin-proteasome system required for mouse development. Recently, we reported that Uba6 brain-specific knockout (termed NKO) mice display abnormal social behavior and neuronal development due to a decreased spine density and accumulation of Ube3a and Shank3. To better characterize a potential role for NKO mice in autism spectrum disorders (ASDs), we performed a comprehensive behavioral characterization of the social behavior and communication of NKO mice. Our behavioral results confirmed that NKO mice display social impairments, as indicated by fewer vocalizations and decreased social interaction. We conclude that UBA6 NKO mice represent a novel ASD mouse model of anti-social and less verbal behavioral symptoms. Copyright © 2014. Published by Elsevier B.V.
    Behavioural Brain Research 12/2014; 281. DOI:10.1016/j.bbr.2014.12.019 · 3.39 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin-like modifier HLA-F adjacent transcript 10 (FAT10) directly targets its substrates for proteasomal degradation by becoming covalently attached via its C-terminal diglycine motif to internal lysine residues of its substrate proteins. The conjugation machinery consists of the bispecific E1 activating enzyme Ubiquitin-like modifier activating enzyme 6 (UBA6), the likewise bispecific E2 conjugating enzyme UBA6-specific E2 enzyme 1 (USE1), and possibly E3 ligases. By mass spectrometry analysis the ubiquitin E1 activating enzyme ubiquitin-activating enzyme 1 (UBE1) was identified as putative substrate of FAT10. Here, we confirm that UBE1 and FAT10 form a stable non-reducible conjugate under overexpression as well as under endogenous conditions after induction of endogenous FAT10 expression with proinflammatory cytokines. FAT10ylation of UBE1 depends on the diglycine motif of FAT10. By specifically downregulating FAT10, UBA6 or USE1 with siRNAs, we show that UBE1 modification depends on the FAT10 conjugation pathway. Furthermore, we confirm that UBE1 does not act as a second E1 activating enzyme for FAT10 but that FAT10ylation of UBE1 leads to its proteasomal degradation, implying a putative regulatory role of FAT10 in the ubiquitin conjugation pathway.
    PLoS ONE 03/2015; 10(3):e0120329. DOI:10.1371/journal.pone.0120329 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ubiquitylation is a widespread post-translational global regulatory system that is essential for the proper functioning of various cellular events. Recent studies have shown that certain types of Escherichia coli can exploit specific aspects of the ubiquitylation system to influence downstream targets. Despite these findings, examination of the effects pathogenic E. coli have on the overall host ubiquitylation system remain unexplored. To study the impact that pathogenic E. coli have on the ubiquitylation levels of host proteins during infections, we analyzed the entire ubiquitylation system during enteropathogenic E. coli infections of cultured cells. We found that these microbes caused a dramatic decrease in ubiquitylated host proteins during these infections. This occurred with a concomitant reduction in the expression of essential E1 activating enzymes in the host, which are integral for the initiation of the ubiquitylation cascade. Control of host E1 enzyme levels was dependent on the E. coli adherence factor plasmid which acted on host aspartyl proteases within enteropathogenic E. coli. Hijacking of the ubiquitylation system did not require the plasmid-encoded regulator or bundle forming pilus expression, as enteropathogenic E. coli mutated in those factors did not revert the ubiquitylation of host proteins or the abundance of E1 enzyme proteins to uninfected levels. Our work shows that E. coli have developed strategies to usurp post-translational systems by targeting crucial enzymes. The ability of enteropathogenic E. coli to inactivate host protein ubiquitylation could enable more efficient effector protein functionality, providing increased bacterial control of host cells during enteropathogenic E. coli pathogenesis.
    The International Journal of Biochemistry & Cell Biology 12/2012; 44(12):2223-2232. DOI:10.1016/j.biocel.2012.09.005 · 4.24 Impact Factor


1 Download
Available from