Article

Development of gallium compounds for treatment of lymphoma: Gallium maltolate, a novel hydroxypyrone gallium compound, induces apoptosis and circumvents lymphoma cell resistance to gallium nitrate

Division of Neoplastic Diseases, Department of Medicine, Medical College of Wisconsin, 9200 West Wisconsin Avenue, Milwaukee, WI 53226, USA.
Journal of Pharmacology and Experimental Therapeutics (Impact Factor: 3.86). 10/2007; 322(3):1228-36. DOI: 10.1124/jpet.107.126342
Source: PubMed

ABSTRACT Clinical studies have shown gallium nitrate to have significant antitumor activity against non-Hodgkin's lymphoma and bladder cancer, thus indicating that gallium-based drugs have potential for further development as antineoplastic agents. In this study, we compared the cytotoxicity of gallium maltolate, a novel gallium compound, with gallium nitrate in lymphoma cell lines, including p53 variant and unique gallium nitrate-resistant cells. We found that gallium maltolate inhibited cell proliferation and induced apoptosis through the mitochondrial pathway at lower concentrations and more rapidly than gallium nitrate. Gallium maltolate produced an increase in intracellular reactive oxygen species (ROS) within 2 h of incubation with cells; this effect could be blocked by mitoquinone, a mitochondria-targeted antioxidant. The role of the transferrin receptor (TfR) in gallium maltolate's action was examined using monoclonal antibody (MoAb) 42/6 to block TfR function. However, although MoAb 42/6 reduced gallium maltolate-induced caspase-3 activity, it had only a minor effect on cell growth inhibition. Importantly, gallium maltolate induced apoptosis in cells resistant to gallium nitrate, and, unlike gallium nitrate, its cytotoxicity was not affected by cellular p53 status. Cellular gallium uptake was greater with gallium maltolate than with gallium nitrate. We conclude that gallium maltolate inhibits cell proliferation and induces apoptosis more efficiently than gallium nitrate. Gallium maltolate is incorporated into lymphoma cells to a greater extent than gallium nitrate via both TfR-independent and -dependent pathways; it has significant activity against gallium nitrate-resistant cells and acts independently of p53. Further studies to evaluate its antineoplastic activity in vivo are warranted.

0 Followers
 · 
73 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metal-based coordination compounds have been used throughout the history of human medicine to treat various diseases, including cancer. Since the discovery of cisplatin in 1965, a great number of metal coordination complexes, such as platinum, ruthenium, gold or copper have been designed, synthesized and tested in order to develop clinically effective and safe drugs. Currently, many reviews cover applications of cytostatic metal complexes pointing out the most promising examples of platinum- and non-platinum-based compounds in preclinical and clinical trials. However, recent comprehensive reviews covering chemical and biological aspects of metal-based coordination compounds in cancer therapy are still rare. In this review we wish to provide an overview of the coordination chemistry of current and novel cytostatic compounds, including an outline of their design and rationale of synthesis, and summarize bio-chemical reactivity and physicochemical properties of candidate metal complexes.
    Journal of applied biomedicine 03/2015; 13(2). DOI:10.1016/j.jab.2015.03.003 · 1.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: While the occurrence and spread of antibiotic resistance in bacterial pathogens is vanishing current anti-infective therapies, the antibiotic discovery pipeline is drying up. In the last years, the repurposing of existing drugs for new clinical applications has become a major research area in drug discovery, also in the field of anti-infectives. This review discusses the potential of repurposing previously approved gallium formulations in antibacterial chemotherapy. Gallium has no proven function in biological systems, but it can act as an iron-mimetic in both prokaryotic and eukaryotic cells. The activity of gallium mostly relies on its ability to replace iron in redox enzymes, thus impairing their function and ultimately hampering cell growth. Cancer cells and bacteria are preferential gallium targets due to their active metabolism and fast growth. The wealth of knowledge on the pharmacological properties of gallium has opened the door to the repurposing of gallium-based drugs for the treatment of infections sustained by antibiotic-resistant bacterial pathogens, such as Acinetobacter baumannii or Pseudomonas aeruginosa, and for suppression of Mycobacterium tuberculosis growth. The promising antibacterial activity of gallium both in vitro and in different animal models of infection raises the hope that gallium will confirm its efficacy in clinical trials, and will become a valuable therapeutic option to cure otherwise untreatable bacterial infections. © 2014 BioFactors, 2014.
    BioFactors 05/2014; 40(3). DOI:10.1002/biof.1159 · 3.00 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND AND PURPOSE A novel anti-neoplastic gallium complex GaQ(3) (KP46), earlier developed by us, is currently in phase I clinical trial. GaQ(3) induced S-phase arrest and apoptosis via caspase/PARP cleavage in a variety of cancers. However, the underlying mechanism of apoptosis is unknown. Here, we have explored the mechanism(s) of GaQ(3) -induced apoptosis in cancer cells, focusing on p53 and intracellular Ca(2+) signalling. EXPERIMENTAL APPROACH GaQ(3) -induced cytotoxicity and apoptosis were determined in cancer cell lines, with different p53 status (p53(+/+) , p53(-/-) and p53 mutant). Time course analysis of intracellular Ca(2+) calcium release, p53 promoter activation, p53-nuclear/cytoplasmic movements and reactive oxygen species (ROS) were conducted. Ca(2+) -dependent formation of the p53-p300 transcriptional complex was analysed by co-immunoprecipitation and chromatin immunoprecipitation. Ca(2+) signalling, p53, p300 and ROS were serially knocked down to study Ca(2+) -p53-ROS ineractions in GaQ(3) -induced apoptosis. KEY RESULTS GaQ(3) triggered intracellular Ca(2+) release stabilizing p53-p300 complex and recruited p53 to p53 promoter, leading to p53 mRNA and protein synthesis. p53 induced higher intracellular Ca(2+) release and ROS followed by activation of p53 downstream genes including those for the micro RNA mir34a. In p53(-/-) and p53 mutant cells, GaQ(3) -induced Ca(2+) -signalling generated ROS. ROS further increased membrane translocation of FAS and FAS-mediated extrinsic apoptosis. CONCLUSIONS AND IMPLICATIONS This study disclosed a novel mechanism of Ca(2+) -signalling-mediated p53 activation and ROS up-regulation. Understanding the mechanism of GaQ(3) -induced apoptosis will help establish this gallium-based organic compound as a potent anti-cancer drug.
    British Journal of Pharmacology 11/2011; 166(2):617-36. DOI:10.1111/j.1476-5381.2011.01780.x · 4.99 Impact Factor