The C-terminal region of Escherichia coli MutS and protein oligomerization

Cátedra de Química Biológica, National University of Cordoba, Argentina, Córdoba, Cordoba, Argentina
Biochemical and Biophysical Research Communications (Impact Factor: 2.28). 09/2007; 360(2):412-7. DOI: 10.1016/j.bbrc.2007.06.056
Source: PubMed

ABSTRACT Escherichia coli MutS, an 853 amino acids oligomeric protein, is involved in the postreplicative DNA mismatch repair and avoidance of homeologous recombination. By constructing MutS mutated versions of the C-terminal region, we determined that deletion of the last 7 C-terminal amino acids is enough to abolish tetramer formation and that the K850A substitution destabilize the tetramer structure. It is proposed that the C-terminal extreme alpha helix (residues 839-850) of the protein may play an important role in protein oligomerization. We also show that the C-terminal region or the C-terminal plus the HTH domain of MutS, fused to the monomeric Maltose Binding Protein promote oligomerization of the chimeric protein. However, chemical cross-linking experiments indicate that the HTH domain improves the oligomerization properties of the fused protein. Escherichia coli cells expressing the fused proteins become hypermutator suggesting that the C-terminal region of MutS plays an important role in vivo.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The process of DNA mismatch repair is initiated when MutS recognizes mismatched DNA bases and starts the repair cascade. The Escherichia coli MutS protein exists in an equilibrium between dimers and tetramers, which has compromised biophysical analysis. To uncouple these states, we have generated stable dimers and tetramers, respectively. These proteins allowed kinetic analysis of DNA recognition and structural analysis of the full-length protein by X-ray crystallography and small angle X-ray scattering. Our structural data reveal that the tetramerization domains are flexible with respect to the body of the protein, resulting in mostly extended structures. Tetrameric MutS has a slow dissociation from DNA, which can be due to occasional bending over and binding DNA in its two binding sites. In contrast, the dimer dissociation is faster, primarily dependent on a combination of the type of mismatch and the flanking sequence. In the presence of ATP, we could distinguish two kinetic groups: DNA sequences where MutS forms sliding clamps and those where sliding clamps are not formed efficiently. Interestingly, this inability to undergo a conformational change rather than mismatch affinity is correlated with mismatch repair.
    Nucleic Acids Research 07/2013; DOI:10.1093/nar/gkt582 · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The MutS protein plays an important role in the DNA mismatch repair system. Mutations in the mutS gene can lead to genome instability and ultimately cell malfunction. Here we have established a method for identifying functional defective mutants of MutS by random mutation and rifampicin screening. Some novel functional sites in MutS were identified. The MutS mutant strains were analyzed using surface plasmon resonance, gel filtration and far-western methods to determine the molecular mechanisms behind the DNA mismatch repair function of MutS.
    Science China. Life sciences 10/2010; 53(10):1170-3. DOI:10.1007/s11427-010-4065-6 · 1.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mismatch Repair System corrects mutations arising from DNA replication that escape from DNA polymerase proofreading activity. This system consists of three main proteins, MutS-L-H, responsible for lesion recognition and repair. MutL is a member of GHKL ATPase family and its ATPase cycle has been proposed to modulate MutL activity during the repair process. Pseudomonas aeruginosa MutL (PaMutL) contains an N-terminal (NTD) ATPase domain connected by a linker to a C-terminal (CTD) dimerization domain that possesses metal ion-dependent endonuclease activity. With the aim to identify characteristics that allow the PaMutL NTD allosteric control of CTD endonuclease activity, we used an in silico and experimental approach to determine the interaction surfaces of P. aeruginosa NTD (PaNTD), and compared it with the well characterized Escherichia coli MutL NTD (EcNTD). Molecular dynamics simulations of PaNTD and EcNTD bound to or free of adenosine nucleotides showed that a significant difference exists between the behavior of the EcNTD and PaNTD dimerization interface, particularly in the ATP lid. Structure based simulations of MutL homologues with endonuclease activity were performed that allowed an insight of the dimerization interface behavior in this family of proteins. Our experimental results show that, unlike EcNTD, PaNTD is dimeric in presence of ADP. Simulations in mixed solvent allowed us to identify the PaNTD putative DNA binding patch and a putative interaction patch located opposite to the dimerization face. Structure based simulations of PaNTD dimer in presence of ADP or ATP suggest that nucleotide binding could differentially modulate PaNTD protein-protein interactions. Far western assays performed in presence of ADP or ATP are in agreement with our in silico analysis.
    PLoS ONE 07/2013; 8(7):e69907. DOI:10.1371/journal.pone.0069907 · 3.53 Impact Factor