The Rhizobium leguminosarum bv. trifolii RosR: transcriptional regulator involved in exopolysaccharide production.

Department of General Microbiology, University of M. Curie-Skłodowska, Akademicka 19, 20-033 Lublin, Poland.
Molecular Plant-Microbe Interactions (Impact Factor: 4.31). 08/2007; 20(7):867-81. DOI: 10.1094/MPMI-20-7-0867
Source: PubMed

ABSTRACT The acidic exopolysaccharide is required for the establishment of symbiosis between the nitrogen-fixing bacterium Rhizobium leguminosarum bv. trifolii and clover. Here, we describe RosR protein from R. leguminosarum bv. trifolii 24.2, a homolog of transcriptional regulators belonging to the family of Ros/MucR proteins. R. leguminosarum bv. trifolii RosR possesses a characteristic Cys2His2 type zinc-finger motif in its C-terminal domain. Recombinant (His)6RosR binds to an RosR-box sequence located up-stream of rosR. Deletion analysis of the rosR upstream region resulted in identification of two -35 to -10 promoter sequences, two conserved inverted palindromic pentamers that resemble the cAMP-CRP binding site of Escherichia coli, inverted repeats identified as a RosR binding site, and other regulatory sequence motifs. When assayed in E. coli, a transcriptional fusion of the cAMP-CRP binding site containing the rosR upstream region and lacZ gene was moderately responsive to glucose. The sensitivity of the rosR promoter to glucose was not observed in E. coli deltacyaA. A rosR frame-shift mutant of R. leguminosarum bv. trifolii formed dry, wrinkled colonies and induced nodules on clover, but did not fix nitrogen. In the rosR mutant, transcription of pssA-lacZ fusion was decreased, indicating positive regulation of the pssA gene by RosR. Multiple copies of rosR in R. leguminosarum bv. trifolii 24.2 increased exopolysaccharide production.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rhizobium leguminosarum bv. trifolii exopolysaccharide (EPS) plays an important role in determining symbiotic competence. The pssA gene encoding the first glucosyl-IP-transferase and rosR encoding a positive transcriptional regulator are key genes involved in the biosynthesis and regulation of EPS production. Mutation in pssA resulted in deficiency in EPS production and rosR mutation substantially decreased the amount of EPS. Both mutants induced nodules but the bacteria were unable to fix nitrogen. Defective functions of pssA and rosR mutants were fully restored by wild type copies of the respective genes. Introduction of multiple rosR and pssA gene copies on the plasmid vector pBBR1MCS-2 into five R. leguminosarum bv. trifolii nodule isolates resulted in significantly increased growth rates, EPS production and the number of nodules on clover roots. Increase in fresh and dry shoot mass of clovers and nodule occupation was also statistically significant. Interestingly, additional copies of pssA but particularly rosR gene, increased strains' competitiveness in relation to the wild type parental strains nearly twofold. Overall, experimental evidence is provided that increased amount of EPS beneficially affects R. leguminosarum bv. trifolii competitiveness and symbiosis with clover.
    Antonie van Leeuwenhoek 08/2009; 96(4):471-86. · 2.07 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Brucella spp. and Sinorhizobium meliloti are α-proteobacteria that share not only an intracellular lifestyle in their respective hosts but also a crucial requirement for cell envelope components and their timely regulation for a successful infectious cycle. Here, we report the characterization of Brucella melitensis mucR, which encodes a zinc finger transcriptional regulator that has previously been shown to be involved in cellular and mouse infections at early time points. MucR modulates the surface properties of the bacteria and their resistance to environmental stresses (i.e., oxidative stress, cationic peptide, detergents). We show that B. melitensis mucR is a functional ortholog of S. meliloti mucR because it was able to restore the production of succinoglycan in a S. meliloti mucR mutant as detected by calcofluor staining. Similar to S. meliloti, B. melitensis MucR also represses its own transcription and flagellar gene expression via the flagellar master regulator ftcR. More surprisingly, we demonstrate that MucR regulates a lipid A-core modification in B. melitensis. These changes could account for the attenuated virulence of a mucR mutant. These data reinforce the idea that there is a common conserved circuitry between plant symbionts and animal pathogens that regulates the relationship they have with their hosts.
    Journal of bacteriology 11/2012; · 3.94 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: In field conditions, inoculated strains of rhizobia are at a survival disadvantage as compared to indigenous strains that are well adapted to local environment. Consequently, nodulation by unwanted strains is a major problem in enhancement of legume growth by rhizobial bio-inoculants. Competitiveness determinants include motility, chemotaxis, cell surface components, ability to use certain substrates, storage polymers, and production of antimicrobial compounds, higher growth rates, and ability to bring about faster infection. More recently, the involvement of other factors such as quorum sensing, the ability to form biofilms, and presence of protein secretion machinery has been shown to be important. Using genomics-based approach, numerous competitiveness genes have been identified. Variation in competitiveness traits among different legume-microsymbionts is becoming apparent. Approaches for the development of competitive bioinoculants by genetic engineering employ the following strategies (a) production of antimetabolites to inhibit nodule occupancy of native rhizobia, (b) interference with the regulation of plant–microbe signaling molecules to ensure efficient nodulation, (c) specific adaptation of the inoculated strain to environmental stresses, and (d) improved nutrition of the inoculant strain for competitive sustenance in soil or rhizosphere including root-derived compounds as well as other soil metabolites such as siderophore iron complexes. Engineering rhizobia for enhanced competitiveness is a challenging aspect of developing effective bioinoculants and ability to utilize heterologous siderophores could provide them with better iron acquisition ability and consequently, rhizosphere stability.
    07/2010: pages 157-194;


Available from
Jun 1, 2014