Article

Common variants in WFS1 confer risk of type 2 diabetes.

UK Medical Research Council (MRC) Epidemiology Unit, Strangeways Research Laboratory, Cambridge CB1 8RN, UK.
Nature Genetics (Impact Factor: 29.65). 09/2007; 39(8):951-3. DOI: 10.1038/ng2067
Source: PubMed

ABSTRACT We studied genes involved in pancreatic beta cell function and survival, identifying associations between SNPs in WFS1 and diabetes risk in UK populations that we replicated in an Ashkenazi population and in additional UK studies. In a pooled analysis comprising 9,533 cases and 11,389 controls, SNPs in WFS1 were strongly associated with diabetes risk. Rare mutations in WFS1 cause Wolfram syndrome; using a gene-centric approach, we show that variation in WFS1 also predisposes to common type 2 diabetes.

Download full-text

Full-text

Available from: Colin N A Palmer, Sep 16, 2014
0 Followers
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past several years, more focus has been placed on dissecting the genetic basis of complex diseases and traits through genome-wide association studies. In contrast, Mendelian disorders have received little attention mainly due to the lack of newer and more powerful methods to study these disorders. Linkage studies have previously been the main tool to elucidate the genetics of Mendelian disorders; however, extremely rare disorders or sporadic cases caused by de novo variants are not amendable to this study design. Exome sequencing has now become technically feasible and more cost-effective due to the recent advances in high-throughput sequence capture methods and next-generation sequencing technologies which have offered new opportunities for Mendelian disorder research. Exome sequencing has been swiftly applied to the discovery of new causal variants and candidate genes for a number of Mendelian disorders such as Kabuki syndrome, Miller syndrome and Fowler syndrome. In addition, de novo variants were also identified for sporadic cases, which would have not been possible without exome sequencing. Although exome sequencing has been proven to be a promising approach to study Mendelian disorders, several shortcomings of this method must be noted, such as the inability to capture regulatory or evolutionary conserved sequences in non-coding regions and the incomplete capturing of all exons.
    Human Genetics 02/2011; 129(4):351-70. DOI:10.1007/s00439-011-0964-2 · 4.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: According to recent genome-wide association studies, a number of single nucleotide polymorphisms (SNPs) are reported to be associated with type 2 diabetes mellitus (T2DM). The aim of the present study was to investigate the association among the polymorphisms of SLC30A8, HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1 and KCNQ1 and the risk of T2DM in the Korean population. This study was based on a multicenter case-control study, including 908 patients with T2DM and 502 non-diabetic controls. We genotyped rs13266634, rs1111875, rs10811661, rs4402960, rs8050136, rs734312, rs7754840 and rs2237892 and measured the body weight, body mass index and fasting plasma glucose in all patients and controls. The strongest association was found in a variant of CDKAL1 [rs7754840, odds ratio (OR) = 1.77, 95% CI = 1.50–2.10, p = 5.0 × 10−11]. The G allele of rs1111875 (OR = 1.43, 95% CI = 1.18–1.72, p = 1.8 × 10−4) in HHEX), the T allele of rs10811661 (OR = 1.47, 95% CI = 1.23–1.75, p = 2.1 × 10−5) in CDKN2A/B) and the C allele of rs2237892 (OR = 1.31, 95% CI = 1.10–1.56, p = 0.003) in KCNQ1 showed significant associations with T2DM. Rs13266634 (OR = 1.19, 95% CI = 1.00–1.42, p = 0.045) in SLC30A8 showed a nominal association with the risk of T2DM, whereas SNPs in IGF2BP2, FTO and WFS1 were not associated. In conclusion, we have shown that SNPs in HHEX, CDKN2A/B, CDKAL1, KCNQ1 and SLC30A8 confer a risk of T2DM in the Korean population.
    Journal of Human Genetics 11/2008; 53(11-12). DOI:10.1007/s10038-008-0341-8 · 2.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes (T2D) is a complex disease that is caused by a complex interplay between genetic, epigenetic and environmental factors. While the major environmental factors, diet and activity level, are well known, identification of the genetic factors has been a challenge. However, recent years have seen an explosion of genetic variants in risk and protection of T2D due to the technical development that has allowed genome-wide association studies and next-generation sequencing. Today, more than 120 variants have been convincingly replicated for association with T2D and many more with diabetes-related traits. Still, these variants only explain a small proportion of the total heritability of T2D. In this review, we address the possibilities to elucidate the genetic landscape of T2D as well as discuss pitfalls with current strategies to identify the elusive unknown heritability including the possibility that our definition of diabetes and its subgroups is imprecise and thereby makes the identification of genetic causes difficult.
    03/2015; 6(1):87-123. DOI:10.3390/genes6010087