Hippocampal involvement in contextual modulation of fear extinction

Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA.
Hippocampus (Impact Factor: 4.3). 09/2007; 17(9):749-58. DOI: 10.1002/hipo.20331
Source: PubMed

ABSTRACT Extinction of fear conditioning in animals is an excellent model for the study of fear inhibition in humans. Substantial evidence has shown that extinction is a new learning process that is highly context-dependent. Several recovery effects (renewal, spontaneous recovery, and reinstatement) after extinction suggest that the contextual modulation of extinction is a critical behavioral mechanism underlying fear extinction. In addition, recent studies demonstrate a critical role for hippocampus in the context control of extinction. A growing body of evidence suggests that the hippocampus not only plays a role in contextual encoding and retrieval of fear extinction memories, but also interacts with other brain structures to regulate context-specificity of fear extinction. In this article, the authors will first discuss the fundamental behavioral features of the context effects of extinction and its underlying behavioral mechanisms. In the second part, the review will focus on the brain mechanisms for the contextual control of extinction.

Download full-text


Available from: Stephen Maren, Jul 06, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aversive events can trigger relapse of extinguished fear memories, presenting a major challenge to the long-term efficacy of therapeutic interventions. Here, we examined factors regulating the relapse of extinguished fear after exposure of rats to a dangerous context. Rats received unsignaled shock in a distinct context ("dangerous" context) 24 h prior to auditory fear conditioning in another context. Fear to the auditory conditioned stimulus (CS) was subsequently extinguished either in the conditioning context ("ambiguous" context) or in a third novel context ("safe" context). Exposure to the dangerous context 30 min before a CS retention test caused relapse to the CS in the ambiguous and safe test contexts relative to nonextinguished controls. When rats were tested 24 h later (with or without short-term testing), rats tested in the ambiguous context continued to exhibit relapse, whereas rats tested in the safe context did not. Additionally, exposure of rats to the conditioning context-in place of the unsignaled shock context-did not result in relapse of fear to the CS in the safe testing context. Our work highlights the vulnerabilities of extinction recall to interference, and demonstrates the importance of context associations in the relapse of fear after extinction. © 2015 Goode et al.; Published by Cold Spring Harbor Laboratory Press.
    Learning & memory (Cold Spring Harbor, N.Y.) 03/2015; 22(3):170-8. DOI:10.1101/lm.037028.114 · 4.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aversive Pavlovian conditioned stimuli (CSs) elicit defensive reactions (e.g., freezing) and motivate instrumental actions like active avoidance (AA). Pavlovian reactions require connections between the lateral (LA) and central (CeA) nuclei of the amygdala, whereas AA depends on LA and basal amygdala (BA). Thus, the neural circuits mediating conditioned reactions and motivation appear to diverge in the amygdala. However, AA is not ideal for studying conditioned motivation, because Pavlovian and instrumental learning are intermixed. Pavlovian-to-instrumental transfer (PIT) allows for the study of conditioned motivation in isolation. PIT refers to the ability of a Pavlovian CS to modulate a separately-trained instrumental action. The role of the amygdala in aversive PIT is unknown. We designed an aversive PIT procedure in rats and tested the effects of LA, BA, and CeA lesions. Rats received Pavlovian tone-shock pairings followed by Sidman shock-avoidance training. PIT was assessed by comparing shuttling rates in the presence and absence of the tone. Tone presentations facilitated instrumental responding. Aversive PIT was abolished by lesions of LA or CeA, but was unaffected by lesions of BA. These results suggest that LA and CeA are essential for aversive conditioned motivation. More specifically, the results are consistent with a model of amygdala processing in which the CS is encoded in the LA and then, via connections to CeA, the motivation to perform the aversive task is enhanced. These findings have implications for understanding the contribution of amygdala circuits to aversive instrumental motivation, but also for the relation of aversive and appetitive behavioral control.
    Frontiers in Behavioral Neuroscience 05/2014; 8:161. DOI:10.3389/fnbeh.2014.00161 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maternal immune activation (MIA) during pregnancy is an environmental risk factor for psychiatric illnesses such as schizophrenia and autism in the offspring. Hence, changes in an array of behaviors, including behavioral flexibility, consistent with altered functioning of cortico-limbic circuits have been reported in rodent models of MIA. Surprisingly, previous studies have not examined the effect of MIA on the extinction of fear conditioning which depends on cortico-limbic circuits. Thus, we tested the effects of treating pregnant Long Evans rats with the viral mimetic polyI:C (gestational day 15; 4 mg/kg; i.v.) on fear conditioning and extinction in the male offspring using two different tasks. In the first experiment, we observed no effect of polyI:C treatment on the acquisition or extinction of a classically conditioned fear memory in a non-discriminative auditory cue paradigm. However, polyI:C-treated offspring did increase contextual freezing during the recall of fear extinction in this non-discriminative paradigm. The second experiment utilized a recently developed task to explicitly test the ability of rats to discriminate among cues signifying fear, reward, and safety; a task that requires behavioral flexibility. To our surprise, polyI:C-treated rats acquired the task in a manner similar to saline-treated rats. However, upon subsequent extinction training, they showed significantly faster extinction of the freezing response to the fear cue. In contrast, during the extinction recall test, polyI:C-treated offspring showed enhanced freezing behavior before and after presentation of the fear cue, suggesting an impairment in their ability to regulate fear behavior. These behavioral results are integrated into the literature suggesting impairments in cortico-limbic brain function in the offspring of rats treated with polyI:C during pregnancy.
    Frontiers in Behavioral Neuroscience 05/2014; 8:168. DOI:10.3389/fnbeh.2014.00168 · 4.16 Impact Factor