Inter-subunit interactions of the Autographa californica M nucleopolyhedrovirus RNA polymerase.

Molecular, Cellular, and Developmental Biology Program, Division of Biology, 116 Ackert Hall, Kansas State University, Manhattan, KS 66506-4901, USA.
Virology (Impact Factor: 3.28). 11/2007; 367(2):265-74. DOI: 10.1016/j.virol.2007.05.026
Source: PubMed

ABSTRACT Autographa californica M nucleopolyhedrovirus transcribes genes using two DNA-directed RNA polymerases; early genes are transcribed by the host RNA polymerase II, and late and very late genes are transcribed by a viral-encoded multisubunit RNA polymerase. The viral RNA polymerase is composed of four proteins: Late Expression Factor-4 (LEF-4), LEF-8, LEF-9, and P47. The predicted amino acid sequences of lef-9 and lef-8 contain motifs that are similar to those that participate at the catalytic center of known RNA polymerases. The requirement for the motif present in LEF-8 in late gene expression has been previously demonstrated. We have assessed the requirement of specific residues within the motif in LEF-9 for late gene expression. The conserved aspartic acid residues within the LEF-9 motif, corresponding to those essential for activity of the Escherichia coli RNA polymerase largest subunit, were required for late gene expression. Furthermore, we found that LEF-8 and LEF-9 interacted in coimmunoprecipitation experiments. We determined possible interactions of all the RNA polymerase subunits in pairwise combinations and found associations between LEF-9 and P47, LEF-4 and P47, and LEF-8 and P47. In contrast, LEF-4 and LEF-8 did not coimmunoprecipitate but coimmunoprecipitated in the presence of P47, suggesting that they do not associate directly. A weak association was observed between LEF-4 and LEF-9. Further analysis also suggested that LEF-8, LEF-9, and P47 have the ability to self-associate. Studies on protein-protein interactions may provide insight into the structural design of the complex and mechanistic aspects affecting late and very late gene expression.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Autographa californica multiple capsid nucleopolyhedrovirus (AcMNPV) was the first baculovirus for which the complete nucleotide sequence became known. Since then 15 years lapsed and much research has been performed to elucidate putative functions of the annotated open reading frames of this virus and this endeavour is still ongoing. AcMNPV is the most well-known and well-studied baculovirus species, not in the least for its application as a vector for the high-level expression of foreign genes in insect cells. This article is the first monograph of a single baculovirus and gives a current overview of what is known about the 151 AcMNPV ORFs, including (putative) function and temporal and spatial presence of transcripts and protein. To date 60 ORFs have a proven function, another 19 ORFs have homologs for which functions are known in other baculoviruses and 72 ORFs are still enigmatic. This paper should assist the reader in quickly finding the essentials of AcMNPV.
    Virologica Sinica 10/2009; 24(5):359-414. DOI:10.1007/s12250-009-3059-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A PCR based method for detection of viral DNA in nucleopolyhedrovirus of three lepidopterans, Spodoptera litura, Amsacta albistriga and Helicoverpa armigera, was developed by employing the late expression factor-8 (lef-8) gene of three NPV using specific primers. The amplicons of 689, 699 and 665 bp were amplified, respectively, and the nucleotide sequences were submitted to GenBank and the accession numbers were obtained. The sequences of lef-8 gene of S. litura NPV and H. armigera NPV matched with those of their respective references in the GenBank database, thereby confirming their identity, however, the sequence of A. albistriga NPV was the first sequence submitted to the GenBank database. The sequence similarity analysis between the three lef-8 gene of NPV sequenced in the present study revealed that there was no significant similarity between them, however A. albistriga NPV and S. litura NPV were found to be closely related. CLUSTAL alignment of the sequences generated revealed general relatedness among NPVs lef-8 gene. The study confirmed that lef-8 gene can be used for quick and correct discriminatory identification of insect viruses.
    Indian Journal of Virology 06/2013; 24(1). DOI:10.1007/s13337-013-0126-3 · 0.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The baculovirus expression system is one of the most successful and widely used eukaryotic protein expression methods. This short review will summarise the role of bacterial artificial chromosomes (BACS) as an enabling technology for the modification of the virus genome. For many years baculovirus genomes have been maintained in E. coli as bacterial artificial chromosomes, and foreign genes have been inserted using a transposition-based system. However, with recent advances in molecular biology techniques, particularly targeting reverse engineering of the baculovirus genome by recombineering, new frontiers in protein expression are being addressed. In particular, BACs have facilitated the propagation of disabled virus genomes that allow high throughput protein expression. Furthermore, improvement in the selection of recombinant viral genomes inserted into BACS has enabled the expression of multiprotein complexes by iterative recombineering of the baculovirus genome.
    09/2012; 2012:628797. DOI:10.5402/2012/628797
    This article is viewable in ResearchGate's enriched format


Available from