AKT/PKB signaling: navigating downstream.

Department of Genetics and Complex Diseases, Harvard School of Public Health, SPH2-117, Boston, MA 02115, USA.
Cell (Impact Factor: 33.12). 07/2007; 129(7):1261-74. DOI: 10.1016/j.cell.2007.06.009
Source: PubMed

ABSTRACT The serine/threonine kinase Akt, also known as protein kinase B (PKB), is a central node in cell signaling downstream of growth factors, cytokines, and other cellular stimuli. Aberrant loss or gain of Akt activation underlies the pathophysiological properties of a variety of complex diseases, including type-2 diabetes and cancer. Here, we review the molecular properties of Akt and the approaches used to characterize its true cellular targets. In addition, we discuss those Akt substrates that are most likely to contribute to the diverse cellular roles of Akt, which include cell survival, growth, proliferation, angiogenesis, metabolism, and migration.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Akt is a key mediator of cell proliferation, survival and metabolism. After translocation to the membrane and phosphorylation at T308 and S473, the activated Akt dissociates from the plasma membrane to cytoplasm, which is an important step to phosphorylate its downstream targets. In addition to its central role in regulating the kinase activity, phosphorylation of T308 in the kinase loop has been reported to be necessary for this dissociation process. However, it is not clear whether the membrane detachment requires further mechanisms. In the present report, we demonstrate that membrane dissociation of Akt requires phosphoinositide-dependent protein kinase 1 (PDK1) which directly phosphorylates not only T308 but also T34 in the pleckstrin homology (PH) domain. Like T308, T34 was phosphorylated in a phosphatidylinositol 3,4,5-trisphosphate- and phosphatidylserine-dependent manner. Phosphorylation of T34 also occurred in cells following growth factor stimulation, concurrently with T308 phosphorylation. Moreover, when T34 was mutated to aspartic acid (T34D) to mimic its phosphorylation, Akt-membrane association assessed by surface plasmon resonance spectroscopy was significantly reduced. In cells, this mutation impaired the IGF-induced Akt membrane translocation and subsequent phosphorylation at T308 and S473. Taken together, our results demonstrate that T34 phosphorylation by PDK1 promotes the membrane dissociation of activated Akt for its downstream action through attenuating membrane binding affinity. This membrane dissociation mechanism offers a new insight for Akt activation process and provides a potential new target for controlling the Akt-dependent cellular processes. Published by Elsevier Ltd.
    The international journal of biochemistry & cell biology 04/2015; 64. DOI:10.1016/j.biocel.2015.04.007 · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although great efforts have been made to improve available therapies, the mortality rate of acute myeloid leukemia (AML) remains high due to poor treatment response and frequent relapse after chemotherapy. Leukemia stem cells (LSCs) are thought to account for this poor prognosis and relapse. Phosphoinositide-dependent kinase 1 (PDK1) is a critical regulator of the PI3K/Akt pathway and has been shown to be frequently activated in leukemia. However, the role of PDK1 in the regulation of LSCs in AML is still not clear. Using a PDK1 conditional deletion MLL-AF9 murine AML model, we revealed that the deletion of PDK1 prolonged the survival of AML mice by inducing LSC apoptosis. This was accompanied by the increased expression of the pro-apoptotic genes Bax and p53 and the reduced expression of Stat5, which has been shown to be constitutively activated in leukemia. Thus, our findings suggest that PDK1 plays an essential role in maintaining LSCs. Further delineating the function of PDK1 in LSCs may provide a new strategy for the improved treatment of AML relapse. Copyright © 2015. Published by Elsevier Inc.
    Biochemical and Biophysical Research Communications 03/2015; 459(4). DOI:10.1016/j.bbrc.2015.03.007 · 2.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Melanoma is the least common form of skin cancer, but it is responsible for the majority of skin cancer deaths. Traditional therapeutics and immunomodulatory agents have not shown much efficacy against metastatic melanoma. Agents that target the RAS/RAF/MEK/ERK (MAPK) signaling pathway-the BRAF inhibitors vemurafenib and dabrafenib, and the MEK1/2 inhibitor trametinib-have increased survival in patients with metastatic melanoma. Further, the combination of dabrafenib and trametinib has been shown to be superior to single agent therapy for the treatment of metastatic melanoma. However, resistance to these agents develops rapidly. Studies of additional agents and combinations targeting the MAPK, PI3K/AKT/mTOR (PI3K), c-kit, and other signaling pathways are currently underway. Furthermore, studies of phytochemicals have yielded promising results against proliferation, survival, invasion, and metastasis by targeting signaling pathways with established roles in melanomagenesis. The relatively low toxicities of phytochemicals make their adjuvant use an attractive treatment option. The need for improved efficacy of current melanoma treatments calls for further investigation of each of these strategies. In this review, we will discuss synthetic small molecule inhibitors, combined therapies and current progress in the development of phytochemical therapies. Copyright © 2015. Published by Elsevier Ireland Ltd.
    Cancer Letters 01/2015; 359(1). DOI:10.1016/j.canlet.2015.01.016 · 5.02 Impact Factor


1 Download
Available from