Priming and effector dependence on insulin B:9-23 peptide in NOD islet autoimmunity.

Barbara Davis Center for Childhood Diabetes, University of Colorado Health Sciences Center (UCHSC), Aurora, CO 80045-6511, USA.
Journal of Clinical Investigation (Impact Factor: 13.77). 08/2007; 117(7):1835-43. DOI: 10.1172/JCI31368
Source: PubMed

ABSTRACT NOD mice with knockout of both native insulin genes and a mutated proinsulin transgene, alanine at position B16 in preproinsulin (B16:A-dKO mice), do not develop diabetes. Transplantation of NOD islets, but not bone marrow, expressing native insulin sequences (tyrosine at position B16) into B16:A-dKO mice rapidly restored development of insulin autoantibodies (IAAs) and insulitis, despite the recipients' pancreatic islets lacking native insulin sequences. Splenocytes from B16:A-dKO mice that received native insulin-positive islets induced diabetes when transferred into wild-type NOD/SCID or B16:A-dKO NOD/SCID mice. Splenocytes from mice immunized with native insulin B chain amino acids 9-23 (insulin B:9-23) peptide in CFA induced rapid diabetes upon transfer only in recipients expressing the native insulin B:9-23 sequence in their pancreata. Additionally, CD4(+) T cells from B16:A-dKO mice immunized with native insulin B:9-23 peptide promoted IAAs in NOD/SCID mice. These results indicate that the provision of native insulin B:9-23 sequences is sufficient to prime anti-insulin autoimmunity and that subsequent transfer of diabetes following peptide immunization requires native insulin B:9-23 expression in islets. Our findings demonstrate dependence on B16 alanine versus tyrosine of insulin B:9-23 for both the initial priming and the effector phase of NOD anti-islet autoimmunity.

Download full-text


Available from: Jean M Jasinski, Dec 27, 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies in type 1 diabetes (T1D) in the nonobese diabetic mouse demonstrated that a crucial insulin epitope (B:9-23) is presented to diabetogenic CD4 T cells by IA(g7) in a weakly bound register. The importance of antigenic peptides with low-affinity HLA binding in human autoimmune disease remains less clear. The objective of this study was to investigate T-cell responses to a low-affinity self-epitope in subjects with T1D. HLA-DQ8 tetramers loaded with a modified insulin peptide designed to improve binding the low-affinity register were used to visualize T-cell responses following in vitro stimulation. Positive responses were only detectable in T1D patients. Because the immunogenic register of B:9-23 presented by DQ8 has not been conclusively demonstrated, T-cell assays using substituted peptides and DQ8 constructs engineered to express and present B:9-23 in fixed binding registers were used to determine the immunogenic register of this peptide. Tetramer-positive T-cell clones isolated from T1D subjects that responded to stimulation by B:11-23 peptide and denatured insulin protein were conclusively shown to recognize B:11-23 bound to HLA-DQ8 in the low-affinity register 3. These T cells also responded to homologous peptides derived from microbial antigens, suggesting that their initial priming could occur via molecular mimicry. These results are in accord with prior observations from the nonobese diabetic mouse model, suggesting a mechanism shared by mouse and man through which T cells that recognize a weakly bound peptide can circumvent tolerance mechanisms and play a role in the initiation of autoimmune diseases, such as T1D.
    Proceedings of the National Academy of Sciences 09/2014; 111(41). DOI:10.1073/pnas.1416864111 · 9.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic beta cell destruction in type 1 diabetes is mediated by cytotoxic CD8(+) T lymphoctyes (CTL). Granzyme B is an effector molecule used by CTL to kill target cells. We previously showed that granzyme B-deficient allogeneic CTL inefficiently killed pancreatic islets in vitro. We generated granzyme B-deficient non-obese diabetic (NOD) mice to test whether granzyme B is an important effector molecule in spontaneous type 1 diabetes. Granzyme B-deficient islet antigen-specific CD8(+) T cells had impaired homing into islets of young mice. Insulitis was reduced in granzyme B-deficient mice at 70 days of age (insulitis score 0.043±0.019 in granzyme B-deficient versus 0.139±0.034 in wild-type NOD mice p<0.05), but was similar to wild-type at 100 and 150 days of age. We observed a reduced frequency of CD3(+)CD8(+) T cells in the islets and peripheral lymphoid tissues of granzyme B-deficient mice (p<0.005 and p<0.0001 respectively), but there was no difference in cell proportions in the thymus. Antigen-specific CTL developed normally in granzyme B-deficient mice, and were able to kill NOD islet target cells as efficiently as wild-type CTL in vitro. The incidence of spontaneous diabetes in granzyme B-deficient mice was the same as wild-type NOD mice. We observed a delayed onset of diabetes in granzyme B-deficient CD8-dependent NOD8.3 mice (median onset 102.5 days in granzyme B-deficient versus 57.50 days in wild-type NOD8.3 mice), which may be due to the delayed onset of insulitis or inefficient priming at an earlier age in this accelerated model of diabetes. Our data indicate that granzyme B is dispensable for beta cell destruction in type 1 diabetes, but is required for efficient early activation of CTL.
    PLoS ONE 07/2012; 7(7):e40357. DOI:10.1371/journal.pone.0040357 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antigens (Ag) from cancer or virus-infected cells must be internalized by dendritic cells (DCs) to be presented to CD8(+) T cells, which eventually differentiate into Ag-specific cytotoxic T lymphocytes (CTLs) that destroy cancer cells and infected cells. This pathway is termed cross-presentation and is also implicated as an essential step in triggering autoimmune diseases such as Type I diabetes. Internalized Ag locates within endosomes, followed by translocation through a putative pore structure spanning endosomal membranes into the cytosol, where it is degraded by the proteasome to generate antigen peptides. During translocation, Ag is believed to be unfolded since the pore size is too narrow to accept native Ag structure. Here, we show that paraformaldehyde-fixed, structurally inflexible Ag is less efficient in cross-presentation because of diminished translocation into the cytosol, supporting the "unfolded Ag" theory. We also show that HSP70 inhibitors block both endogenous and cross-presentation. ImageStream analysis revealed that the inhibition in cross-presentation is not due to blocking of Ag translocation because a HSP70 inhibitor rather facilitates the translocation, which is in marked contrast to the effect of an HSP90 inhibitor that blocks Ag translocation. Our results indicate that Ag translocation to the cytosol in cross-presentation is differentially regulated by HSP70 and HSP90.
    09/2012; 2012:745962. DOI:10.1155/2012/745962