Article

Expression and localization of hepcidin in macrophages: a role in host defense against tuberculosis.

Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA.
Journal of Leukocyte Biology (Impact Factor: 4.3). 11/2007; 82(4):934-45. DOI: 10.1189/jlb.0407216
Source: PubMed

ABSTRACT Hepcidin is an antimicrobial peptide produced by the liver in response to inflammatory stimuli and iron overload. Hepcidin regulates iron homeostasis by mediating the degradation of the iron export protein ferroportin 1, thereby inhibiting iron absorption from the small intestine and release of iron from macrophages. Here, we examined the expression of hepcidin in macrophages infected with the intracellular pathogens Mycobacterium avium and Mycobacterium tuberculosis. Stimulation of the mouse RAW264.7 macrophage cell line and mouse bone marrow-derived macrophages with mycobacteria and IFN-gamma synergistically induced high levels of hepcidin mRNA and protein. Similar results were obtained using the human THP-1 monocytic cell line. Stimulation of macrophages with the inflammatory cytokines IL-6 and IL-beta did not induce hepcidin mRNA expression. Iron loading inhibited hepcidin mRNA expression induced by IFN-gamma and M. avium, and iron chelation increased hepcidin mRNA expression. Intracellular protein levels and secretion of hepcidin were determined by a competitive chemiluminescence ELISA. Stimulation of RAW264.7 cells with IFN-gamma and M. tuberculosis induced intracellular expression and secretion of hepcidin. Furthermore, confocal microscopy analyses showed that hepcidin localized to the mycobacteria-containing phagosomes. As hepcidin has been shown to possess direct antimicrobial activity, we investigated its activity against M. tuberculosis. We found that hepcidin inhibited M. tuberculosis growth in vitro and caused structural damage to the mycobacteria. In summary, our data show for the first time that hepcidin localizes to the phagosome of infected, IFN-gamma-activated cells and has antimycobacterial activity.

0 Followers
 · 
219 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vibrios are associated with a broad diversity of hosts that produce antimicrobial peptides (AMPs) as part of their defense against microbial infections. In particular, vibrios colonize epithelia, which function as protective barriers and express AMPs as a first line of chemical defense against pathogens. Recent studies have shown they can also colonize phagocytes, key components of the animal immune system. Phagocytes infiltrate infected tissues and use AMPs to kill the phagocytosed microorganisms intracellularly, or deliver their antimicrobial content extracellularly to circumvent tissue infection. We review here the mechanisms by which vibrios have evolved the capacity to evade or resist the potent antimicrobial defenses of the immune cells or tissues they colonize. Among their strategies to resist killing by AMPs, primarily vibrios use membrane remodeling mechanisms. In particular, some highly resistant strains substitute hexaacylated Lipid A with a diglycine residue to reduce their negative surface charge, thereby lowering their electrostatic interactions with cationic AMPs. As a response to envelope stress, which can be induced by membrane-active agents including AMPs, vibrios also release outer membrane vesicles to create a protective membranous shield that traps extracellular AMPs and prevents interaction of the peptides with their own membranes. Finally, once AMPs have breached the bacterial membrane barriers, vibrios use RND efflux pumps, similar to those of other species, to transport AMPs out of their cytoplasmic space.
    10/2014; 3(4):540-563. DOI:10.3390/antibiotics3040540
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mycobacterium tuberculosis is the major pathogen of tuberculosis (TB). With the growing problem of M. tuberculosis resistant to conventional antibiotics, especially multi-drug resistant tuberculosis (MDR-TB) and extensively-drug resistant tuberculosis (XDR-TB), the need for new TB drugs is now more prominent than ever. Among the promising candidates for anti-TB drugs, anti-mycobacterial peptides have a few advantages, such as low immunogenicity, selective affinity to prokaryotic negatively charged cell envelopes, and diverse modes of action. In this review, we summarize the recent progress in the anti-mycobacterial peptides, highlighting the sources, effectiveness and bactericidal mechanisms of these antimicrobial peptides. Most of the current anti-mycobacterial peptides are derived either from host immune cells, bacterial extraction, or mycobacteriophages. Besides trans-membrane pore formation, which is considered to be the common bactericidal mechanism, many of the anti-mycobacterial peptides have the second non-membrane targets within mycobacteria. Additionally, some antimicrobial peptides play critical roles in innate immunity. However, a few obstacles, such as short half-life in vivo and resistance to antimicrobial peptides, need overcoming before clinical applications. Nevertheless, the multiple functions of anti-mycobacterial peptides, especially direct killing of pathogens and immune-modulators in infectious and inflammatory conditions, indicate that they are promising candidates for future drug development. © 2015 S. Karger AG, Basel.
    Cellular Physiology and Biochemistry 01/2015; 35(2):452-466. DOI:10.1159/000369711 · 3.55 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Alcoholic liver disease (ALD) is the major liver disease in the developed world and characterized by hepatic iron overload in ca. 50 % of all patients. This iron overload is an independent factor of disease progression, hepatocellular carcinoma and it determines survival. Since simple phlebotomy does not allow the efficient removal of excess iron in ALD, a better understanding of the underlying mechanisms is urgently needed to identify novel targeted treatment strategies. This review summarizes the present knowledge on iron overload in patients with ALD.Although multiple sides of the cellular and systemic iron homeostasis may be affected during alcohol consumption, most studies have focused on potential hepatic causes. However, it should not be overlooked that more than 90 % of the major iron pool, the hemoglobin-associated iron, is efficiently recycled within the human body and it is also strongly affected by alcohol. The few available studies suggest various molecular mechanisms that involve iron regulatory protein (IRP1), transferrin receptor 1 (TfR1), and the systemic iron master switch hepcidin, but not classical mutations of the HFE gene. Notably, reactive oxygen species (ROS), namely, hydrogen peroxide (H2O2), are powerful modulators of these iron-steering proteins. For instance, depending on the level, H2O2 may both strongly suppress and induce the expression of hepcidin that could partly explain the anemia and iron overload observed in these patients. More studies with appropriate ROS models such as the novel GOX/CAT system are required to unravel the mechanisms of iron overload in ALD to consequently identify molecular-targeted therapies in the future.
    Advances in Experimental Medicine and Biology 01/2015; 815:89-112. DOI:10.1007/978-3-319-09614-8_6 · 2.01 Impact Factor

Full-text (2 Sources)

Download
31 Downloads
Available from
May 15, 2014