Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes.

Obesity Biology Unit (Liverpool Centre for Nutritional Genomics and Liverpool Obesity Research Network), School of Clinical Sciences, University Clinical Departments, University of Liverpool, Liverpool, UK.
Pflügers Archiv - European Journal of Physiology (Impact Factor: 3.07). 01/2008; 455(3):479-92. DOI: 10.1007/s00424-007-0301-8
Source: PubMed

ABSTRACT The effect of hypoxia, induced by incubation under low (1%) oxygen tension or by exposure to CoCl(2), on the expression and secretion of inflammation-related adipokines was examined in human adipocytes. Hypoxia led to a rapid and substantial increase (greater than sevenfold by 4 h of exposure to 1% O(2)) in the hypoxia-sensitive transcription factor, HIF-1alpha, in human adipocytes. This was accompanied by a major increase (up to 14-fold) in GLUT1 transporter mRNA level. Hypoxia (1% O(2) or CoCl(2)) led to a reduction (up to threefold over 24 h) in adiponectin and haptoglobin mRNA levels; adiponectin secretion also decreased. No changes were observed in TNFalpha expression. In contrast, hypoxia resulted in substantial increases in FIAF/angiopoietin-like protein 4, IL-6, leptin, MIF, PAI-1 and vascular endothelial growth factor (VEGF) mRNA levels. The largest increases were with FIAF (maximum 210-fold), leptin (maximum 29-fold) and VEGF (maximum 23-fold); these were reversed on return to normoxia. The secretion of IL-6, leptin, MIF and VEGF from the adipocytes was also stimulated by exposure to 1% O(2). These results demonstrate that hypoxia induces extensive changes in human adipocytes in the expression and release of inflammation-related adipokines. Hypoxia may underlie the development of the inflammatory response in adipocytes, leading to obesity-associated diseases.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Growing by an alarming rate in the Western world, obesity has become a condition associated with a multitude of diseases such as diabetes, metabolic syndrome and various cancers. Generally viewed as an abnormal accumulation of hypertrophied adipocytes, obesity is also a poor prognostic factor for recurrence and chemoresistance in cancer patients. With more than two-thirds of the adult population in the United States considered clinically overweight or obese, it is critical that the relationship between obesity and cancer is further emphasized and elucidated. Adipocytes are highly metabolically active cells, which, through release of adipokines and cytokines and activation of endocrine and paracrine pathways, affect processes in neighboring and distant cells, altering their normal homeostasis. This work will examine specifically how adipocyte-derived factors regulate the cellular metabolism of malignant cells within the tumor niche. Briefly, tumor cells undergo metabolic pressure towards a more glycolytic and hypoxic state through a variety of metabolic regulators and signaling pathways, i.e., phosphoinositol-3 kinase (PI3K), hypoxia-inducible factor-1 alpha (HIF-1α), and c-MYC signaling. Enhanced glycolysis and high lactate production are hallmarks of tumor progression largely because of a process known as the Warburg effect. Herein, we review the latest literature pertaining to the body of work on the interactions between adipose and tumor cells, and underlining the changes in cancer cell metabolism that have been targeted by the currently available treatments.
  • Frontiers in Endocrinology 04/2015; 6. DOI:10.3389/fendo.2015.00055
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perivascular adipose tissue (PVAT) releases several adipo(cyto)kines. Some are vasoactive substances that elicit a net beneficial anticontractile effect. Resveratrol and testosterone are known to modulate adipo(cyto)kine release from adipose tissue and could therefore influence the anticontractile effect of PVAT. In vitro tension measurements were performed using thoracic aorta segments with and without adipose tissue from sham-operated or orchidectomized male Swiss mice. Concentration-response curves to norepinephrine (NOR) were constructed in the presence and absence of resveratrol (10 μM, 15 min) or the relaxant effect of resveratrol (10-100 μM) was investigated after inducing tone with NOR (5 μM). Aortas with PVAT displayed significantly attenuated contractions to NOR compared with aortas without PVAT. In aortas without PVAT, resveratrol (10 μM) significantly decreased NOR responses and elicited concentration-dependent (10-100 µM) relaxations. However, in aortas with adherent PVAT, resveratrol (10 μM) neither decreased NOR responses, nor did resveratrol (10-100 µM) induce arterial relaxations. The anticontractile effect of PVAT was less pronounced in the presence of resveratrol and unaltered by orchidectomy. Orchidectomy did not influence contractions induced by NOR. Orchidectomy does not modulate the anticontractile capacity of PVAT, while resveratrol decreases the vasorelaxing influence of PVAT. The positive effects associated with resveratrol addition are neutralized by the presence of PVAT. This is thought to result from a dual effect of resveratrol: (1) inhibition of the influence of vasodilatory adipo(cyto)kines and (2) a direct relaxant effect on the vascular smooth muscle. Overall, the beneficial relaxing effect of resveratrol is lost in mice thoracic aorta surrounded by PVAT.
    Heart and Vessels 03/2015; DOI:10.1007/s00380-015-0664-2 · 2.11 Impact Factor


Available from