A sphingosine kinase 1 mutation sensitizes the myocardium to ischemia/reperfusion injury

Department of Medicine, University of California, San Francisco, San Francisco, California, United States
Cardiovascular Research (Impact Factor: 5.81). 10/2007; 76(1):41-50. DOI: 10.1016/j.cardiores.2007.05.029
Source: PubMed

ABSTRACT Sphingosine kinase (SphK) is a key enzyme in the synthesis of sphingosine 1-phosphate (S1P), a bioactive sphingolipid. SphK is involved in ischemic preconditioning (IPC). To date no studies in genetically altered animals have examined the role of SphK1 in myocardial ischemia/reperfusion (IR) injury and IPC.
Wild-type and SphK1 null mouse hearts were subjected to IR (50 min global ischemia and 40 min reperfusion) in a Langendorff apparatus. IPC consisted of 2 min of global ischemia and 2 min of reperfusion for two cycles. At baseline, there were no differences in left ventricular developed pressure (LVDP), +/-dP/dtmax, and LV end-diastolic pressure (EDP) between SphK1 mutant and wild-type (WT) mouse hearts. In the mutants, total SphK enzyme activity was reduced by 44% and S1P levels were decreased by 41%. SphK1 null hearts subjected to IR exhibited more cardiac damage compared with WT: LVDP and +/-dP/dtmax decreased, LVEDP increased, and infarct size increased (n=6, P<0.05). Apoptosis was markedly enhanced in SphK1 mutant IR mouse hearts. IPC was cardioprotective in WT hearts, but this protection appeared to be ineffective in SphK1 null hearts. There was no change in infarct size in the IPC+IR group compared to the IR group in the null hearts (50.1+/-5.0% vs 45.0+/-3.8%, n=6, P=NS). IPC remained ineffective in the null hearts even when the index ischemia time was shortened by 10 min.
Deletion of the SphK1 gene sensitizes the myocardium to IR injury and appears to impair the protective effect of IPC. These data provide the first genetic evidence that the SphK1-S1P pathway is a critical mediator of IPC and cell survival.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sphingosine 1-phosphate (S1P) is a small bioactive lipid molecule that is involved in several processes both intracellularly and extracellularly. It acts intracellularly to promote the survival and growth of the cell, through its interaction with molecules in different compartments of the cell. Extracellularly, it can exist at high concentrations in the blood plasma and lymph, further down inside the tissue. This causes an S1P gradient important for cell migration. S1P signals through five G protein-coupled receptors, S1PR1–S1PR5, whose expression varies in different types of cells and tissue. S1P signaling can be involved in physiological and pathophysiological conditions of the cardiovascular, nervous, and immune systems and diseases such as ischemia/reperfusion injury, autoimmunity, and cancer. In this review, we discuss this involvement and how it can be used to discover novel therapeutic targets.
    Cell Health and Cytoskeleton 01/2012; DOI:10.2147/CHC.S34014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We review here the novel cardiac protective effects of the multifunctional enzyme, p21-activated kinase 1 (PAK1), a member of a serine/threonine protein kinase family. Despite the large body of evidence from studies in noncardiac tissue indicating that PAK1 activity is key in the regulation of a number of cellular functions, the role of PAK1 in the heart has only been revealed over the past few years. In this review, we assemble an overview of the recent findings on PAK1 signaling in the heart, particularly its cardiac protective effects. We present a model for PAK1 signaling that provides a mechanism for specifically affecting cardiac cellular processes in which regulation of protein phosphorylation states by protein phosphatase 2A (PP2A) predominates.We discuss the anti-adrenergic and antihypertrophic cardiac protective effects of PAK1, as well as its role in maintaining ventricular Ca(2+) homeostasis and electrophysiological stability under physiological, β-adrenergic and hypertrophic stress conditions.
    11/2014; 8(4). DOI:10.1007/s11684-014-0380-9
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: : FTY720, an analogue of sphingosine-1-phosphate, is cardioprotective during acute injury. Whether long-term FTY720 affords cardioprotection is unknown. Here, we report the effects of oral FTY720 on ischemia/reperfusion injury and in hypomorphic apoE mice deficient in SR-BI receptor expression (ApoeR61/SRB1 mice), a model of diet-induced coronary atherosclerosis and heart failure. We added FTY720 (0.3 mg·kg·d) to the drinking water of C57BL/6J mice. After ex vivo cardiac ischemia/reperfusion injury, these mice had significantly improved left ventricular (LV) developed pressure and reduced infarct size compared with controls. Subsequently, ApoeR61/SRB1 mice fed a high-fat diet for 4 weeks were treated or not with oral FTY720 (0.05 mg·kg·d). This sharply reduced mortality (P < 0.02) and resulted in better LV function and less LV remodeling compared with controls without reducing hypercholesterolemia and atherosclerosis. Oral FTY720 reduced the number of blood lymphocytes and increased the percentage of CD4Foxp3 regulatory T cells (Tregs) in the circulation, spleen, and lymph nodes. FTY720-treated mice exhibited increased TGF-β and reduced IFN-γ expression in the heart. Also, CD4 expression was increased and strongly correlated with molecules involved in natural Treg activity, such as TGF-β and GITR. Our data suggest that long-term FTY720 treatment enhances LV function and increases longevity in mice with heart failure. These benefits resulted not from atheroprotection but from systemic immunosuppression and a moderate reduction of inflammation in the heart.
    Journal of cardiovascular pharmacology 02/2014; 63(2):132-43. DOI:10.1097/FJC.0000000000000031 · 2.11 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014