Article

Expression and function of junctional adhesion molecule-C in human and experimental arthritis

Division of Rheumatology, Department of Internal Medicine, University Hospital, 26 avenue Beau-Séjour, 1211 Geneva 14, Switzerland.
Arthritis research & therapy (Impact Factor: 3.75). 07/2007; 9(4):R65. DOI: 10.1186/ar2223
Source: PubMed

ABSTRACT Junctional adhesion molecule-C (JAM-C) is an adhesion molecule involved in transendothelial migration of leukocytes. In this study, we examined JAM-C expression in the synovium and investigated the role of this molecule in two experimental mouse models of arthritis. JAM-C expression was investigated by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of a monoclonal anti-JAM-C antibody were assessed in antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis. JAM-C was expressed by synovial fibroblasts in the lining layer and associated with vessels in the sublining layer in human and mouse arthritic synovial tissue. In human tissue, JAM-C expression was increased in rheumatoid arthritis (RA) as compared to osteoarthritis synovial samples (12.7 +/- 1.3 arbitrary units in RA versus 3.3 +/- 1.1 in OA; p < 0.05). Treatment of mice with a monoclonal anti-JAM-C antibody decreased the severity of AIA. Neutrophil infiltration into inflamed joints was selectively reduced as compared to T-lymphocyte and macrophage infiltration (0.8 +/- 0.3 arbitrary units in anti-JAM-C-treated versus 2.3 +/- 0.6 in isotype-matched control antibody-treated mice; p < 0.05). Circulating levels of the acute-phase protein serum amyloid A as well as antigen-specific and concanavalin A-induced spleen T-cell responses were significantly decreased in anti-JAM-C antibody-treated mice. In the serum transfer-induced arthritis model, treatment with the anti-JAM-C antibody delayed the onset of arthritis. JAM-C is highly expressed by synovial fibroblasts in RA. Treatment of mice with an anti-JAM-C antibody significantly reduced the severity of AIA and delayed the onset of serum transfer-induced arthritis, suggesting a role for JAM-C in the pathogenesis of arthritis.

0 Followers
 · 
143 Views
  • Source
    • "Serial sections (3 μm) were stained with H&E for evaluation of inflammation or with toluidine blue to analyze cartilage damage. Sections were scored by a pathologist (CAS) in a blinded manner for arthritis severity by assessing inflammation and joint destruction with a semi-quantitative score, as described elsewhere [29]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Introduction Interleukin (IL)-36 refers to three related IL-1 family cytokines, IL-36α, IL-36β, and IL-36γ, that bind to the IL-36 receptor (IL-36R). IL-36 exerts proinflammatory effects in skin and lung and stimulates T cell responses. In the present study, we examined the expression and function of IL-36R and its ligands in experimental arthritis. Methods Collagen-induced arthritis (CIA), antigen-induced arthritis (AIA), and K/BxN serum transfer-induced arthritis were induced according to standard protocols. Messenger RNA levels for IL-36R and its ligands in the joints of mice with CIA were determined by RT-qPCR. Mice with CIA were injected with a blocking monoclonal anti-IL-36R, a blocking anti-IL-1RI, or their isotype-matched control antibodies at the time of arthritis onset. Anti-IL-36R or control antibodies were also injected at the time of AIA induction. Finally, IL-36R-deficient mice were examined in AIA and serum transfer-induced arthritis. The development and severity of arthritis were assessed by clinical and histological scoring. Results IL-36R, IL-36Ra and IL-36γ mRNA were detected in the joints of mice with CIA, but their levels did not correlate with arthritis severity. As opposed to anti-IL-1RI antibody treatment, the injection of an anti-IL-36R antibody was devoid of effect on the development and severity of CIA. The severity of joint inflammation and structural damage in AIA was also unaltered by anti-IL-36R antibody treatment. Finally, the severity of AIA and K/BxN serum transfer-induced arthritis was similar in IL-36R-deficient and wild-type mice. Conclusions The development and severity of experimental arthritis are independent of IL-36R signaling.
    Arthritis research & therapy 03/2013; 15(2):R38. DOI:10.1186/ar4192 · 3.75 Impact Factor
  • Source
    • "Recent data suggest potential roles for this protein in the pathogenesis of rheumatoid arthritis, being highly expressed in rheumatoid synovium. Moreover, targeting JAM3 significantly reduced the severity of experimental arthritic disease [24], [25]. We would propose that down-regulation of this gene by AnxA1 may contribute to its inhibitory properties in models of chronic inflammation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Our understanding of pro-resolution factors in determining the outcome of inflammation has recently gained ground, yet not many studies have investigated whether specific genes or patterns of genes, are modified by these mediators. Here, we have focussed on the glucocorticoid modulated pro-resolution factor annexin A1 (AnxA1), studying if its interaction with the ALX receptor would affect downstream genomic targets. Using microarray technology in ALX transfected HEK293 cells, we discovered an over-lapping, yet distinct gene activation profile for AnxA1 compared to its N-terminal mimetic peptide Ac2-26, which may be suggestive of unique downstream inflammatory outcomes for each substance. When the up-regulated genes were explored, consistently induced was the sphingosine phosphate phosphatase-2 gene (SGPP2), involved in regulation of the sphingosine 1 phosphate chemotactic system. Up-regulation of this gene, as well as JAG1 (and down-regulation of JAM3), was confirmed using real time PCR both with transfected HEK293 cells and human peripheral blood leukocytes. Furthermore, lymph nodes taken from AnxA1(null) mice displayed lower SGPP2 gene activity. Finally, connectivity map analysis for AnxA1 and peptide Ac2-26 indicated striking similarities with known anti-inflammatory therapeutics, glucocorticoids and aspirin-like compounds, as well as with histone deacetylase inhibitors. We believe these new data raise the profile of AnxA1 from being solely a short-term anti-inflammatory factor, to being a 'trigger' of the endogenous pro-resolution arsenal.
    PLoS ONE 09/2010; 5(9). DOI:10.1371/journal.pone.0012771 · 3.23 Impact Factor
  • Source
    • "The photosensitizers BPDMA, mTHPC or 5-aminolevulinic acid hexyl ester were also evaluated in murine models of AIA with beneficial effects [10] [11] [12]. In our approach, the efficiency of photodynamic treatment of mice knees was evaluated by measuring the concentration in mice blood of the Serum Amyloid A (SAA), an acute-phase protein which is used in the diagnosis and prognosis of human adult RA and AIA models [13] [14] [45] [46]. SAA measurements in the blood, when compared to histological examination of slides of the knees at the end of the experimental period, allow to follow the time-course of response to treatment. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages play key roles in inflammatory disorders. Therefore, they are targets of treatments aiming at their local destruction in inflammation sites. However, injection of low molecular mass therapeutics, including photosensitizers, in inflamed joints results in their rapid efflux out of the joints, and poor therapeutic index. To improve selective uptake and increase retention of therapeutics in inflamed tissues, hydrophilic nanogels based on chitosan, of which surface was decorated with hyaluronate and which were loaded with one of three different anionic photosensitizers were developed. Optimal uptake of these functionalized nanogels by murine RAW 264.7 or human THP-1 macrophages as models was achieved after <4h incubation, whereas only negligible uptake by murine fibroblasts used as control cells was observed. The uptake by cells and the intracellular localization of the photosensitizers, of the fluorescein-tagged chitosan and of the rhodamine-tagged hyaluronate were confirmed by fluorescence microscopy. Photodynamic experiments revealed good cell photocytotoxicity of the photosensitizers entrapped in the nanogels. In a mouse model of rheumatoid arthritis, injection of free photosensitizers resulted in their rapid clearance from the joints, while nanogel-encapsulated photosensitizers were retained in the inflamed joints over a longer period of time. The photodynamic treatment of the inflamed joints resulted in a reduction of inflammation comparable to a standard corticoid treatment. Thus, hyaluronate-chitosan nanogels encapsulating therapeutic agents are promising materials for the targeted delivery to macrophages and long-term retention of therapeutics in leaky inflamed articular joints.
    Journal of Controlled Release 02/2010; 144(2):242-50. DOI:10.1016/j.jconrel.2010.02.008 · 7.26 Impact Factor
Show more

Preview (3 Sources)

Download
0 Downloads
Available from