Article

Expression and function of junctional adhesion molecule-C in human and experimental arthritis

Division of Rheumatology, Department of Internal Medicine, University Hospital, 26 avenue Beau-Séjour, 1211 Geneva 14, Switzerland.
Arthritis research & therapy (Impact Factor: 4.12). 07/2007; 9(4):R65. DOI: 10.1186/ar2223
Source: PubMed

ABSTRACT Junctional adhesion molecule-C (JAM-C) is an adhesion molecule involved in transendothelial migration of leukocytes. In this study, we examined JAM-C expression in the synovium and investigated the role of this molecule in two experimental mouse models of arthritis. JAM-C expression was investigated by reverse transcriptase-polymerase chain reaction and immunohistochemistry. The effects of a monoclonal anti-JAM-C antibody were assessed in antigen-induced arthritis (AIA) and K/BxN serum transfer-induced arthritis. JAM-C was expressed by synovial fibroblasts in the lining layer and associated with vessels in the sublining layer in human and mouse arthritic synovial tissue. In human tissue, JAM-C expression was increased in rheumatoid arthritis (RA) as compared to osteoarthritis synovial samples (12.7 +/- 1.3 arbitrary units in RA versus 3.3 +/- 1.1 in OA; p < 0.05). Treatment of mice with a monoclonal anti-JAM-C antibody decreased the severity of AIA. Neutrophil infiltration into inflamed joints was selectively reduced as compared to T-lymphocyte and macrophage infiltration (0.8 +/- 0.3 arbitrary units in anti-JAM-C-treated versus 2.3 +/- 0.6 in isotype-matched control antibody-treated mice; p < 0.05). Circulating levels of the acute-phase protein serum amyloid A as well as antigen-specific and concanavalin A-induced spleen T-cell responses were significantly decreased in anti-JAM-C antibody-treated mice. In the serum transfer-induced arthritis model, treatment with the anti-JAM-C antibody delayed the onset of arthritis. JAM-C is highly expressed by synovial fibroblasts in RA. Treatment of mice with an anti-JAM-C antibody significantly reduced the severity of AIA and delayed the onset of serum transfer-induced arthritis, suggesting a role for JAM-C in the pathogenesis of arthritis.

0 Followers
 · 
131 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Platelets primarily mediate hemostasis and thrombosis, whereas leukocytes are responsible for immune responses. Since platelets interact with leukocytes at the site of vascular injury, thrombosis and vascular inflammation are closely intertwined and occur consecutively. Recent studies using real-time imaging technology demonstrated that platelet-neutrophil interactions on the activated endothelium are an important determinant of microvascular occlusion during thromboinflammatory disease in which inflammation is coupled to thrombosis. Although the major receptors and counter receptors have been identified, it remains poorly understood how heterotypic platelet-neutrophil interactions are regulated under disease conditions. This review discusses our current understanding of the regulatory mechanisms of platelet-neutrophil interactions in thromboinflammatory disease.
    Cellular and Molecular Life Sciences CMLS 02/2015; DOI:10.1007/s00018-015-1845-y · 5.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous work suggested implication of the interleukin (IL)-1 family cytokine IL-33, signaling through its receptor ST2, in the pathogenesis of human and mouse arthritis. In this study, we directly investigated the role of endogenous IL-33 in antigen-induced arthritis (AIA) and collagen-induced arthritis (CIA) using IL-33 KO mice. AIA was induced by injection of methylated bovine serum albumin (mBSA) into knee joints of previously immunized mice. CIA was induced by immunization with bovine type II collagen. Disease severity was evaluated by clinical and histological scoring and cellular immune responses were assessed in cultured draining lymph node cells. Our results indicate that the development of AIA or CIA, as assessed by clinical or histological evaluation, is not impaired in IL-33 deficient mice. We did not observe any consistent modifications in humoral or cellular immune responses in IL-33 KO mice, although IL-33 deficiency enhanced antigen-specific IFN-γ production, proliferation or IgG2a titers in some experiments, suggesting that endogenous IL-33 may contribute to shaping the adaptive immune response. In conclusion, our data suggest that IL-33 plays a modifying rather than a pivotal role in disease development in two models of immune-mediated arthritis.
    Cytokine 09/2014; 69(1):68–74. DOI:10.1016/j.cyto.2014.05.007 · 2.87 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Junctional adhesion molecule C (JAM-C) is a transmembrane protein with significant roles in regulation of endothelial cell (EC) functions, including immune cell recruitment and angiogenesis. As these responses are important in promoting tumor growth, the role of EC JAM-C in tumor development was investigated using the ID8 syngeneic model of ovarian cancer. Within 10-15 wk, intraperitoneally injected ID8 cells form multiple tumor deposits and ascites that resemble human high-grade serous ovarian cancer. Compared to wild-type mice, survival in this model was increased in EC JAM-C knockouts (KOs; 88 vs. 96 d, P=0.04) and reduced in EC JAM-C transgenics (88 vs. 78.5 d, P=0.03), mice deficient in or overexpressing EC JAM-C, respectively. While tumor growth was significantly reduced in EC JAM-C KOs (87% inhibition at 10 wk, P<0.0005), this was not associated with alterations in tumor vessel density or immune cell infiltration. However, tumor microvessels from EC JAM-C-deficient mice exhibited reduced pericyte coverage and increased vascular leakage, suggesting a role for EC JAM-C in the development of functional tumor vessels. These findings provide evidence for a role for EC JAM-C in tumor growth and aggressiveness as well as recruitment of pericytes to newly formed blood vessels in a model of ovarian cancer.-Leinster, D. A., Colom, B., Whiteford, J. R., Ennis, D. P., Lockley, M., McNeish, I. A., Aurrand-Lions, M., Chavakis, T., Imhof, B. A., Balkwill, F. R., Nourshargh, S. Endothelial cell junctional adhesion molecule C plays a key role in the development of tumors in a murine model of ovarian cancer.
    The FASEB Journal 07/2013; 27(10). DOI:10.1096/fj.13-230441 · 5.48 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from