C4 Photosynthesis Evolved in Grasses via Parallel Adaptive Genetic Changes

Department of Ecology and Evolution, Biophore, University of Lausanne, 1015 Lausanne, Switzerland.
Current Biology (Impact Factor: 9.92). 08/2007; 17(14):1241-7. DOI: 10.1016/j.cub.2007.06.036
Source: PubMed

ABSTRACT Phenotypic convergence is a widespread and well-recognized evolutionary phenomenon. However, the responsible molecular mechanisms remain often unknown mainly because the genes involved are not identified. A well-known example of physiological convergence is the C4 photosynthetic pathway, which evolved independently more than 45 times [1]. Here, we address the question of the molecular bases of the C4 convergent phenotypes in grasses (Poaceae) by reconstructing the evolutionary history of genes encoding a C4 key enzyme, the phosphoenolpyruvate carboxylase (PEPC). PEPC genes belong to a multigene family encoding distinct isoforms of which only one is involved in C4 photosynthesis [2]. By using phylogenetic analyses, we showed that grass C4 PEPCs appeared at least eight times independently from the same non-C4 PEPC. Twenty-one amino acids evolved under positive selection and converged to similar or identical amino acids in most of the grass C4 PEPC lineages. This is the first record of such a high level of molecular convergent evolution, illustrating the repeatability of evolution. These amino acids were responsible for a strong phylogenetic bias grouping all C4 PEPCs together. The C4-specific amino acids detected must be essential for C4 PEPC enzymatic characteristics, and their identification opens new avenues for the engineering of the C4 pathway in crops.

  • [Show abstract] [Hide abstract]
    ABSTRACT: I. II. III. IV. V. VI. VII. VIII. References SUMMARY: C4 photosynthesis is a physiological syndrome resulting from multiple anatomical and biochemical components, which function together to increase the CO2 concentration around Rubisco and reduce photorespiration. It evolved independently multiple times and C4 plants now dominate many biomes, especially in the tropics and subtropics. The C4 syndrome comes in many flavours, with numerous phenotypic realizations of C4 physiology and diverse ecological strategies. In this work, we analyse the events that happened in a C3 context and enabled C4 physiology in the descendants, those that generated the C4 physiology, and those that happened in a C4 background and opened novel ecological niches. Throughout the manuscript, we evaluate the biochemical and physiological evidence in a phylogenetic context, which demonstrates the importance of contingency in evolutionary trajectories and shows how these constrained the realized phenotype. We then discuss the physiological innovations that allowed C4 plants to escape these constraints for two important dimensions of the ecological niche - growth rates and distribution along climatic gradients. This review shows that a comprehensive understanding of C4 plant ecology can be achieved by accounting for evolutionary processes spread over millions of years, including the ancestral condition, functional convergence via independent evolutionary trajectories, and physiological diversification.
    New Phytologist 09/2014; 204(4). DOI:10.1111/nph.13033 · 6.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Collections of specimens held by natural history museums are invaluable material for biodiversity inventory and evolutionary studies, with specimens accumulated over 300 years readily available for sampling. Unfortunately, most museum specimens yield low-quality DNA. Recent advances in sequencing technologies, so called next-generation sequencing, are revolutionizing phylogenetic investigations at a deep level. Here, the Illumina technology (HiSeq) was used on herbarium specimens of Sartidia (subfamily Aristidoideae, Poaceae), a small African–Malagasy grass lineage (six species) characteristic of wooded savannas, which is the C3 sister group of Stipagrostis, an important C4 genus from Africa and SW Asia. Complete chloroplast and nuclear ribosomal sequences were assembled for two Sartidia species, one of which (S. perrieri) is only known from a single specimen collected in Madagascar 100 years ago. Partial sequences of a few single-copy genes encoding phosphoenolpyruvate carboxylases (ppc) and malic enzymes (nadpme) were also assembled. Based on these data, the phylogenetic position of Malagasy Sartidia in the subfamily Aristidoideae was investigated and the biogeographical history of this genus was analysed with full species sampling. The evolutionary history of two genes for C4 photosynthesis (ppc-aL1b and nadpme-IV) in the group was also investigated. The gene encoding the C4 phosphoenolpyruvate caroxylase of Stipagrostis is absent from S. dewinteri suggesting that it is not essential in C3 members of the group, which might have favoured its recruitment into a new metabolic pathway. Altogether, the inclusion of historical museum specimens in phylogenomic analyses of biodiversity opens new avenues for evolutionary studies.
    Journal of Experimental Botany 09/2014; DOI:10.1093/jxb/eru395 · 5.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Three C4 acid decarboxylases, phosphoenolpyruvate carboxykinase (PEPCK), NADP-malic enzyme (NADP-ME), and NAD-malic enzyme (NAD-ME) were recruited from C3 plants to support C4 photosynthesis. In Poaceae, there are established lineages having PEPCK type species, and some NADP-ME lineages in which PEPCK contributes to C4. Besides family Poaceae, recently PEPCK has been reported to function in C4 photosynthesis in eudicot species including Cleome gynandra (Cleomaceae), Trianthema portulacastrum and Zaleya pentandra (Aizoaceae). We evaluated PEPCK by enzyme assay and western blots in representatives of Poaceae, Aizoaceae, Cleomaceae, and Chenopodiaceae compared to that in the PEPCK type C4 grass Spartina anglica. Eragrostis nutans was identified as the first NAD-ME type C4 grass having substantial amounts of PEPCK. In the eudicots, including C. gynandra, Cleome angustifolia, T. portulacastrum, Z. pentandra, and nine C4 members of family Chenopodiaceae (which has the most C4 species and diversity in forms among eudicot families), amounts of PEPCK were generally very low (barely detectable up to 4% of that in S. anglica). Based on these results, C4 species can be classified biochemically according to the dominant decarboxylase recruited for C4 function; and, Poaceae remains the only family in which PEPCK is known to have a significant role in C4 photosynthesis. Published by Elsevier Ireland Ltd.
    Plant Science 03/2015; 235. DOI:10.1016/j.plantsci.2015.03.004 · 4.11 Impact Factor


Available from
May 28, 2014