Article

Patterns of MRI atrophy in tau positive and ubiquitin positive frontotemporal lobar degeneration

Memory and Aging Center, and Department of Neurology, University of California, San Francisco, San Francisco, California 94117, USA.
Journal of neurology, neurosurgery, and psychiatry (Impact Factor: 5.58). 01/2008; 78(12):1375-8. DOI: 10.1136/jnnp.2006.114231
Source: PubMed

ABSTRACT We applied optimised voxel based morphometry (VBM) to brain MRIs from autopsy proven cases of tau positive frontotemporal lobar degeneration (FTLD-T, n = 6), ubiquitin and TDP-43 positive/tau negative FTLD (FTLD-U, n = 8) and cognitively normal controls (n = 61). The analysis revealed that FTLD-T and FTLD-U both show atrophy in the frontal cortex and striatum, but striatal atrophy is more severe in FTLD-T. Manual region of interest tracing of caudate and putamen volumes confirmed the VBM findings. These anatomical differences may help distinguish between FTLD spectrum pathological subtypes in vivo.

0 Followers
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: To identify overlapping and unique grey (GM) and white matter (WM) signatures within the frontotemporal lobar degeneration (FTLD) continuum, and discriminate likely FTLD-TAU and FTLD-TDP patients using structural and diffusion tensor (DT) magnetic resonance imaging (MRI). T1-weighted and DT MRI were collected from 121 subjects: 35 motor neuron disease (MND), 14 behavioral variant of frontotemporal dementia, 12 semantic and 11 nonfluent primary progressive aphasia, 21 progressive supranuclear palsy syndrome patients, and 28 healthy controls. Patterns of GM atrophy were established using voxel-based morphometry. Tract-based spatial statistics was used to perform a WM voxelwise analysis of mean diffusivity and fractional anisotropy. In all clinical FTLD phenotypes, the pattern of WM damage was more distributed than that of GM atrophy. All patient groups, with the exception of MND cases with a pure motor syndrome, shared a focal GM atrophy centered around the dorsolateral and medial frontal cortex and a largely overlapping pattern of WM damage involving the genu and body of the corpus callosum and ventral frontotemporal and dorsal frontoparietal WM pathways. Surrounding this common area, phenotype (symptom)-specific GM and WM regions of damage were found in each group. In the FTLD spectrum, WM disruption is more severe than GM damage. Frontal cortex and WM pathways represent the common target of neurodegeneration in these conditions. The topographic pattern of damage supports a "prion-like" protein propagation through WM connections as underlying mechanism of the stereotyped progression of FTLD. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    Human Brain Mapping 03/2015; DOI:10.1002/hbm.22794 · 6.92 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: The authors sought to compare gray matter changes in First Episode Schizophrenia (FES) compared with Fronto-Temporal Lobar Degeneration (FTLD) using meta-analytic methods applied to neuro-imaging studies. METHODS: A systematic search was conducted for published, structural voxel-based morphometric MRI studies in patients with FES or FTLD. Data were combined using anatomical likelihood estimation (ALE) to determine the extent of gray matter decreases and analysed to ascertain the degree of overlap in the spatial distribution of brain changes in both diseases. RESULTS: Data were extracted from 18 FES studies (including a total of 555 patients and 621 comparison subjects) and 20 studies of FTLD or related disorders (including a total of 311 patients and 431 comparison subjects). The similarity in spatial overlap of brain changes in the two disorders was significant (p=0.001). Gray matter deficits common to both disorders included bilateral caudate, left insula and bilateral uncus regions. CONCLUSIONS: There is a significant overlap in the distribution of structural brain changes in First Episode Schizophrenia and Fronto-Temporal Lobar Degeneration. This may reflect overlapping aetiologies, or a common vulnerability of these regions to the distinct aetio-pathological processes in the two disorders.
    BMC Psychiatry 08/2012; 12(1):104. DOI:10.1186/1471-244X-12-104 · 2.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Primary progressive aphasia (PPA) is a focal neurodegeneration of the brain affecting the language network. Patients can have isolated language impairment for years without impairment in other areas. PPA is classified as primary progressive nonfluent aphasia (PNFA), semantic dementia (SD), and logopenic aphasia, which have distinct patterns of atrophy on neuroimaging. PNFA and SD are included under frontotemporal lobar degenerations. PNFA patients have effortful speech with agrammatism, which is frequently associated with apraxia of speech and demonstrate atrophy in the left Broca's area and surrounding region on neuroimaging. Patients with SD have dysnomia with loss of word and object (or face) meaning with asymmetric anterior temporal lobe atrophy. Logopenic aphasics have word finding difficulties with frequent pauses in conversation, intact grammar, and word comprehension but impaired repetition for sentences. The atrophy is predominantly in the left posterior temporal and inferior parietal regions. Recent studies have described several progranulin mutations on chromosome 17 in PNFA. The three clinical syndromes have a less robust relationship to the underlying pathology, which is heterogeneous and includes tauopathy, ubiquitinopathy, Pick's disease, corticobasal degeneration, progressive supranuclear palsy, and Alzheimer's disease. Recent studies, however, seem to indicate that a better characterization of the clinical phenotype (apraxic, agrammatic, semantic, logopenic, jargon) increases the predictive value of the underlying pathology. Substantial advances have been made in our understanding of PPAs but developing new biomarkers is essential in making accurate causative diagnoses in individual patients. This is critically important in the development and evaluation of disease-modifying drugs.
    Annals of Indian Academy of Neurology 12/2010; 13(Suppl 2):S109-15. DOI:10.4103/0972-2327.74255 · 0.51 Impact Factor

Preview

Download
5 Downloads
Available from