Article

A new cytotoxic phenazine derivative from a deep sea bacterium Bacillus sp.

Key Laboratory of Marine Drugs, Chinese Ministry of Education, Institute of Marine Drugs and Food, Ocean University of China, Qingdao 266003, PR China.
Archives of Pharmacal Research (Impact Factor: 1.54). 06/2007; 30(5):552-5. DOI:10.1007/BF02977647
Source: PubMed

ABSTRACT A novel phenazine derivative (1) together with six known compounds (2-7) were isolated by bioassay-guided fractionation from the culture broth of a bacterium, Bacillus sp., collected from a Pacific deep sea sediment sample (depth 5059 m). The structures of these compounds were determined using spectroscopic methods. Their cytotoxic effects on P388 and K562 cell lines were preliminarily examined using the sulforhodamine-B (SRB) assay.

0 0
 · 
0 Bookmarks
 · 
167 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Two new (1 and 2) and one known phenazine derivative (lavanducyanin, 3) were isolated and identified from the fermentation broth of a marine-derived Streptomyces sp. (strain CNS284). In mammalian cell culture studies, compounds 1, 2 and 3 inhibited TNF-α-induced NFκB activity (IC₅₀ values of 4.1, 24.2, and 16.3 μM, respectively) and LPS-induced nitric oxide production (IC₅₀ values of >48.6, 15.1, and 8.0 μM, respectively). PGE₂ production was blocked with greater efficacy (IC₅₀ values of 7.5, 0.89, and 0.63 μM, respectively), possibly due to inhibition of cyclooxygenases in addition to the expression of COX-2. Treatment of cultured HL-60 cells led to dose-dependent accumulation in the subG1 compartment of the cell cycle, as a result of apoptosis. These data provide greater insight on the biological potential of phenazine derivatives, and some guidance on how various substituents may alter potential anti-inflammatory and anti-cancer effects.
    Marine Drugs 02/2012; 10(2):451-64. · 3.98 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Marine microorganisms are considered to be an important source of bioactive molecules against various diseases and have great potential to increase the number of lead molecules in clinical trials. Progress in novel microbial culturing techniques as well as greater accessibility to unique oceanic habitats has placed the marine environment as a new frontier in the field of natural product drug discovery. A total of 24 microbial extracts from deep-sea brine pools in the Red Sea have been evaluated for their anticancer potential against three human cancer cell lines. Downstream analysis of these six most potent extracts was done using various biological assays, such as Caspase-3/7 activity, mitochondrial membrane potential (MMP), PARP-1 cleavage and expression of gammaH2Ax, Caspase-8 and -9 using western blotting. In general, most of the microbial extracts were found to be cytotoxic against one or more cancer cell lines with cell line specific activities. Out of the 13 most active microbial extracts, six extracts were able to induce significantly higher apoptosis (>70%) in cancer cells. Mechanism level studies revealed that extracts from Chromohalobacter salexigens (P3-86A and P3-86B(2)) followed the sequence of events of apoptotic pathway involving MMP disruption, caspase-3/7 activity, caspase-8 cleavage, PARP-1 cleavage and Phosphatidylserine (PS) exposure, whereas another Chromohalobacter salexigens extract (K30) induced caspase-9 mediated apoptosis. The extracts from Halomonas meridiana (P3-37B), Chromohalobacter israelensis (K18) and Idiomarina loihiensis (P3-37C) were unable to induce any change in MMP in HeLa cancer cells, and thus suggested mitochondria-independent apoptosis induction. However, further detection of a PARP-1 cleavage product, and the observed changes in caspase-8 and -9 suggested the involvement of caspase-mediated apoptotic pathways. Altogether, the study offers novel findings regarding the anticancer potential of several halophilic bacterial species inhabiting the Red Sea (at the depth of 1500--2500 m), which constitute valuable candidates for further isolation and characterization of bioactive molecules.
    BMC Complementary and Alternative Medicine 12/2013; 13(1):344. · 2.08 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: BACKGROUND: High salinity and temperature combined with presence of heavy metals and low oxygen renders deep-sea anoxic brines of the Red Sea as one of the most extreme environments on Earth. The ability to adapt and survive in these extreme environments makes inhabiting bacteria interesting candidates for the search of novel bioactive molecules. METHODS: Total 20 i.e. lipophilic (chloroform) and hydrophilic (70% ethanol) extracts of marine bacteria isolated from brine-seawater interface of the Red Sea were tested for cytotoxic and apoptotic activity against three human cancer cell lines, i.e. HeLa (cervical carcinoma), MCF-7 (Breast Adenocarcinoma) and DU145 (Prostate carcinoma). RESULTS: Among these, twelve extracts were found to be very active after 24 hours of treatment, which were further evaluated for their cytotoxic and apoptotic effects at 48 hr. The extracts from the isolates P1-37B and P3-37A (Halomonas) and P1-17B (Sulfitobacter) have been found to be the most potent against tested cancer cell lines. CONCLUSION: Overall, bacterial isolates from the Red Sea displayed promising results and can be explored further to find novel drug-like molecules. The cell line specific activity of the extracts may be attributed to the presence of different polarity compounds or the cancer type i.e. biological differences in cell lines and different mechanisms of action of programmed cell death prevalent in different cancer cell lines.
    BMC Complementary and Alternative Medicine 02/2013; 13(1):29. · 2.08 Impact Factor

Full-text

View
6 Downloads
Available from