Increased susceptibility to colitis-associated cancer of mice lacking TIR8, an inhibitory member of the interleukin-1 receptor family

University of Milan, Milano, Lombardy, Italy
Cancer Research (Impact Factor: 9.28). 08/2007; 67(13):6017-21. DOI: 10.1158/0008-5472.CAN-07-0560
Source: PubMed

ABSTRACT TIR8 (also known as SIGIRR) is a member of the interleukin-1/Toll-like receptor family with inhibitory activity on inflammatory reactions and high expression in intestinal mucosa. Here, we report that Tir8-deficient mice exhibited a dramatic intestinal inflammation in response to dextran sulfate sodium salt (DSS) administration in terms of weight loss, intestinal bleeding, and mortality and showed increased susceptibility to carcinogenesis in response to azoxymethane and DSS. Increased susceptibility to colitis-associated cancer was associated to increased permeability and local production of prostaglandin E(2), proinflammatory cytokines, and chemokines. Thus, these results are consistent with the hypothesis that TIR8, by negatively regulating intestinal inflammation, plays a nonredundant role in the control of the protumor activity of chronic inflammation in the gut.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Similar to IL-1α and IL-33, IL-1 family member IL-37b translocates to the nucleus and is associated with suppression of innate and adaptive immunity. Here we demonstrate an extracellular function of the IL-37 precursor and a processed form. Recombinant IL-37 precursor reduced LPS-induced IL-6 by 50% (P < 0.001) in highly inflammatory human blood-derived M1 differentiated macrophages derived from selective subjects but not M2 macrophages. In contrast, a neutralizing monoclonal anti-IL-37 increased LPS-induced IL-6, TNFα and IL-1β (P < 0.01). The suppression by IL-37 was consistently observed at low picomolar but not nanomolar concentrations. Whereas LPS induced a 12-fold increase in TNFα mRNA, IL-37 pretreatment decreased the expression to only 3-fold over background (P < 0.01). Mechanistically, LPS-induced p38 and pERK were reduced by IL-37. Recombinant IL-37 bound to the immobilized ligand binding α-chain of the IL-18 receptor as well as to the decoy receptor IL-1R8. In M1 macrophages, LPS increased the surface expression of IL-1R8. Compared with human blood monocytes, resting M1 cells express more surface IL-1R8 as well as total IL-1R8; there was a 16-fold increase in IL-1R8 mRNA levels when pretreated with IL-37. IL-37 reduced LPS-induced TNFα and IL-6 by 50-55% in mouse bone marrow-derived dendritic cells, but not in dendritic cells derived from IL-1R8-deficient mice. In mice subjected to systemic LPS-induced inflammation, pretreatment with IL-37 reduced circulating and organ cytokine levels. Thus, in addition to a nuclear function, IL-37 acts as an extracellular cytokine by binding to the IL-18 receptor but using the IL-1R8 for its anti-inflammatory properties.
    Proceedings of the National Academy of Sciences 02/2015; 112(8). DOI:10.1073/pnas.1424626112 · 9.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mouse secretory phospholipase A2 group IIA (sPLA2-IIA) gene Pla2g2a has been identified as a susceptibility gene for cancer of the small and large intestine. Interestingly, unlike most previously identified tumor susceptibility genes, Pla2g2a does not behave like a classical oncogene or tumor suppressor gene. Hence, identification of its biological functions in tumor development may shed new light on general mechanisms that modulate colon cancer risk. So far, sPLA2-IIA has been proposed to play a role in anti-bacterial defense, inflammation and eicosanoid generation, in clearance of apoptotic cells, and in the Wnt signaling pathway. More recently, comparison of RNA expression profiles of colon from Pla2g2a-transgenic to Pla2g2a-deficient mice confirmed and even extended sPLA2-IIA's diverse biological effects. In this review we aim to summarize current knowledge about the various links of sPLA2-IIA to cancer of the gastro-intestinal tract, and propose several models to illustrate its putative biological effects on tumor development.
    Frontiers in Bioscience 05/2008; Volume(13):4144. DOI:10.2741/2998 · 4.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Maintenance of a balance between commensal bacteria and the mucosal immune system is crucial and intestinal dysbiosis may be a key event in the pathogenesis of colorectal cancer (CRC). The toll-like receptor 4 (TLR4) is an important pattern-recognition receptor that regulates inflammation and barrier function in the gut by a mechanism that involves activation of the nuclear factor-κB (NF-κB) transcription factor. Dietary and life style factors may impact these functions. We therefore used a Danish prospective case-cohort study of 1010 CRC cases and 1829 randomly selected participants from the Danish Diet, Cancer and Health cohort to investigate three polymorphisms in NFKB1 and TLR4 and their possible interactions with diet and life style factors in relation to risk of CRC. Homozygous carriage of the variant allele of the TLR4/rs5030728 polymorphism was associated with increased risk of CRC (incidence rate ratio (IRR) = 1.30; 95% confidence interval (CI): 1.05-1.60; P = 0.02 (gene-dose model); IRR = 1.24; 95%CI: 1.01-1.51; P = 0.04 (recessive model)). Del-carriers of the NFKB1/rs28362491 polymorphism had a 17% (95%CI: 1.03-1.34; P = 0.02) increased risk of CRC compared to homozygous carriers of the ins-allele. However, none of these risk estimates withstood adjustment for multiple comparisons. We found no strong gene-environment interactions between the examined polymorphism and diet and life style factors in relation to CRC risk.
    PLoS ONE 02/2015; 10(2):e0116394. DOI:10.1371/journal.pone.0116394 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 22, 2014