Mutation analysis of NPHP6/CEP290 in patients with Joubert syndrome and Senior-Løken syndrome.

Journal of Medical Genetics (Impact Factor: 5.64). 11/2007; 44(10):657-63. DOI: 10.1136/jmg.2007.052027
Source: PubMed

ABSTRACT Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease that constitutes the most common genetic cause of renal failure in the first three decades of life. Using positional cloning, six genes (NPHP1-6) have been identified as mutated in NPHP. In Joubert syndrome (JBTS), NPHP may be associated with cerebellar vermis aplasia/hypoplasia, retinal degeneration and mental retardation. In Senior-Løken syndrome (SLSN), NPHP is associated with retinal degeneration. Recently, mutations in NPHP6/CEP290 were identified as a new cause of JBTS.
Mutational analysis was performed on a worldwide cohort of 75 families with SLSN, 99 families with JBTS and 21 families with isolated nephronophthisis.
Six novel and six known truncating mutations, one known missense mutation and one novel 3 bp pair in-frame deletion were identified in a total of seven families with JBTS, two families with SLSN and one family with isolated NPHP.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the gene centrosomal protein 290 kDa (CEP290) cause an array of debilitating and phenotypically distinct human diseases, ranging from the devastating blinding disease Leber congenital amaurosis (LCA) to Senior-Løken syndrome, Joubert syndrome, and the lethal Meckel-Gruber syndrome. Despite its critical role in biology and disease, very little is known about CEP290's function. Here, we have identified 4 functional domains of the protein. We found that CEP290 directly binds to cellular membranes through an N-terminal domain that includes a highly conserved amphipathic helix motif and to microtubules through a domain located within its myosin-tail homology domain. Furthermore, CEP290 activity was regulated by 2 autoinhibitory domains within its N and C termini, both of which were found to play critical roles in regulating ciliogenesis. Disruption of the microtubule-binding domain in a mouse model of LCA was sufficient to induce significant deficits in cilium formation, which led to retinal degeneration. These data implicate CEP290 as an integral structural and regulatory component of the cilium and provide insight into the pathological mechanisms of LCA and related ciliopathies. Further, these data illustrate that disruption of particular CEP290 functional domains may lead to particular disease phenotypes and suggest innovative strategies for therapeutic intervention.
    The Journal of clinical investigation 09/2013; DOI:10.1172/JCI69448 · 15.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ciliopathies are an expanding group of rare conditions characterized by multiorgan involvement, that are caused by mutations in genes encoding for proteins of the primary cilium or its apparatus. Among these genes, CEP290 bears an intriguing allelic spectrum, being commonly mutated in Joubert syndrome and related disorders (JSRD), Meckel syndrome (MKS), Senior-Loken syndrome and isolated Leber congenital amaurosis (LCA). Although these conditions are recessively inherited, in a subset of patients only one CEP290 mutation could be detected. To assess whether genomic rearrangements involving the CEP290 gene could represent a possible mutational mechanism in these cases, exon dosage analysis on genomic DNA was performed in two groups of CEP290 heterozygous patients, including five JSRD/MKS cases and four LCA, respectively. In one JSRD patient, we identified a large heterozygous deletion encompassing CEP290 C-terminus that resulted in marked reduction of mRNA expression. No copy number alterations were identified in the remaining probands. The present work expands the CEP290 genotypic spectrum to include multiexon deletions. Although this mechanism does not appear to be frequent, screening for genomic rearrangements should be considered in patients in whom a single CEP290 mutated allele was identified. © 2009 Wiley-Liss, Inc.
    American Journal of Medical Genetics Part A 10/2009; 149A(10). DOI:10.1002/ajmg.a.33025 · 2.30 Impact Factor
  • Source

Full-text (2 Sources)

Available from
May 22, 2014