Endogenous Estrogen Levels and the Effects of Ultra-Low-Dose Transdermal Estradiol Therapy on Bone Turnover and BMD in Postmenopausal Women

Veterans Affairs Medical Center, San Francisco, California, USA.
Journal of Bone and Mineral Research (Impact Factor: 6.59). 11/2007; 22(11):1791-7. DOI: 10.1359/jbmr.070707
Source: PubMed

ABSTRACT In a randomized controlled trial of a 0.014 mg/d transdermal estradiol patch, serum bone turnover markers decreased to a greater degree in postmenopausal women with lower versus higher endogenous estradiol levels. This suggests that the protective effects of ultra-low-dose estrogen therapy on the postmenopausal skeletal health may depend critically on women's endogenous estrogen levels before treatment.
Postmenopausal women with very low or undetectable estradiol levels have lower BMD, increased bone turnover, and increased risk of hip and vertebral fracture. We assessed whether the effects of ultra-low-dose 0.014 mg/d transdermal estradiol (Menostar; Berlex, Montvale, NJ, USA) on bone turnover and BMD are influenced by endogenous estradiol levels.
We analyzed data from postmenopausal women (mean age, 66 yr) randomized to an 0.014-mg/d transdermal estradiol patch or placebo in the ultra-low-dose transdermal estrogen (ULTRA) trial. The free estradiol index (FEI), calculated as the ratio of total estradiol (by mass spectometry) to sex hormone-binding globulin (SHBG; by immunoradiometric assay) x 100, was used to estimate bioavailable estradiol at baseline. Among the 382 women who adhered to >or=80% of study medication, we examined change in serum osteocalcin and bone-specific alkaline phosphatase levels at 12 mo and total hip and lumbar spine BMD at 24 mo in each quintile of FEI.
Compared with women in the highest quintile of FEI, those in the lowest quintile of FEI had a 26% greater reduction in bone-specific alkaline phosphatase and 15% greater reduction in osteocalcin in response to ultra-low estradiol treatment (p for trend across quintiles < 0.05). There was a trend toward greater improvement in total hip BMD (p = 0.06) but not spine BMD (p = 0.90) in those with lower versus higher FEI levels.
The beneficial effects of ultra-low-dose 0.014-mg/d transdermal estrogen therapy on skeletal health may depend critically on women's endogenous estrogen levels before treatment.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Our previous research showed greatest protection to vertebral bone mineral density and strength in ovariectomized (OVX) rats when lignan- and α-linolenic acid-rich flaxseed (FS) is combined with low-dose estrogen therapy (LD) compared with either treatment alone. This study determined the effects of combined FS+LD on serum and tissue markers of bone turnover and microarchitecture to explain our previous findings. Three-month-old OVX rats were randomized to negative control (NEG), FS, LD or FS+LD for 2 or 12 weeks, meaningful time points for determining effects on markers of bone metabolism and bone structure, respectively. Ground FS was added to the AIN-93M diet (100 g/kg diet) and LD (0.42 μg 17β-estradiol/(kg body weight·day)) was delivered by subcutaneous implant. Sham rats were included as positive control. Bone formation (e.g., osteocalcin), bone resorption (e.g., tartrate-resistant acid phosphatase-5β (TRAP-5β)), as well as osteoprotegerin (OPG) and receptor activator of nuclear factor κ-B ligand (RANKL) were analyzed from the 2-week study by commercial assays (serum) and (or) histology (vertebra). Vertebral bone microarchitecture was measured from the 12-week study using microcomputed tomography. In serum, FS+LD and LD induced lower TRAP-5β and osteocalcin, and higher OPG and OPG/RANKL ratio versus NEG and FS (p < 0.05). In vertebrae, FS+LD induced higher OPG and lower osteocalcin versus NEG (p < 0.01) and did not differ from LD and FS. FS+LD improved bone microarchitecture versus NEG, FS, and LD (p < 0.05). In conclusion, FS+LD protects bone tissue because of a reduction in bone turnover. However, elucidating the distinctive action of FS+LD on bone turnover compared with LD requires further investigation.
    Applied Physiology Nutrition and Metabolism 01/2014; 39(7):1-10. DOI:10.1139/apnm-2013-0417 · 2.23 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the beginning, that is from the 1960's, when a link between menopause and osteoporosis was first identified; estrogen treatment was the standard for preventing bone loss, however there was no fracture data, even though it was thought to be effective. This continued until the Women's Health Initiative (WHI) study in 2001 that published data on 6 years of treatment with hormone therapy that showed an increase in heart attacks and breast cancer. Even though the risks were small, 1 per 1500 users annually, patients were worried and there was a large drop off in estrogen use. In later analyses the WHI study showed that estrogen reduced fractures and actually prevented heart attacks in the 50-60 year age group. Estrogen alone appeared to be safer to use than estrogen+the progestin medroxyprogesterone acetate and actually reduced breast cancer. At the same time other drugs were being developed for bone that belong to the bisphosphonate group and the first generation of compounds showed moderate potency on bone resorption. The second and third generation compounds were much more potent and in a series of large trials were shown to reduce fractures. For the last 15 years the treatment of osteoporosis belonged to the bisphosphonate compounds, most of which reduce fracture rates by 50 percent. With the exception of gastrointestinal irritation the drugs are well tolerated and highly effective. The sophistication of the delivery systems now allow treatment that can be given daily, weekly, monthly and annually either orally or intravenously Bone remodeling is a dynamic process that repairs microfractures and replaces old bone with new bone. In the last 10 years there has been a remarkable understanding of bone biology so that new therapies can be specifically designed on a biological basis. The realization that RANKL was the final cytokine involved in the resorption process and that marrow cells produced a natural antagonist called Osteoprotegerin (OPG) quickly led to two lines of therapy. First OPG was used as a therapy to block RANKL was initially successful but later antibodies against OPG developed and this line of treatment had to be discontinued. The next step was to develop a monoclonal antibody against RANKL and this proved to be highly effective in blocking bone resorption. It led to development of a drug Denosumab that successful reduces fractures and is now one of the therapeutic options for osteoporosis treatment. On the anabolic side bone biology research showed that osteocytes produces sclerostin an inhibitor of the anabolic WNT signaling pathway. Recent development of a monoclonal antibody against sclerostin has shown remarkable anabolic activity in bone showing large increases in bone density and fracture trials are now underway. The newer treatments for osteoporosis are likely to be based on our understanding of bone biology and the design of new highly specific compounds with fewer side effects. This review summarizes the diagnosis of postmenopausal osteoporosis and various available non-pharmacological and pharmacological therapies available for its management.
    The Journal of steroid biochemistry and molecular biology 10/2013; DOI:10.1016/j.jsbmb.2013.09.008 · 4.05 Impact Factor