Article

Long-Term Impact of Radiation on the Stem Cell and Oligodendrocyte Precursors in the Brain

Department of Neurosurgery, Sloan-Kettering Institute for Cancer Research, New York, New York, United States of America.
PLoS ONE (Impact Factor: 3.53). 02/2007; 2(7):e588. DOI: 10.1371/journal.pone.0000588
Source: PubMed

ABSTRACT The cellular basis of long term radiation damage in the brain is not fully understood.
We administered a dose of 25Gy to adult rat brains while shielding the olfactory bulbs. Quantitative analyses were serially performed on different brain regions over 15 months. Our data reveal an immediate and permanent suppression of SVZ proliferation and neurogenesis. The olfactory bulb demonstrates a transient but remarkable SVZ-independent ability for compensation and maintenance of the calretinin interneuron population. The oligodendrocyte compartment exhibits a complex pattern of limited proliferation of NG2 progenitors but steady loss of the oligodendroglial antigen O4. As of nine months post radiation, diffuse demyelination starts in all irradiated brains. Counts of capillary segments and length demonstrate significant loss one day post radiation but swift and persistent recovery of the vasculature up to 15 months post XRT. MRI imaging confirms loss of volume of the corpus callosum and early signs of demyelination at 12 months. Ultrastructural analysis demonstrates progressive degradation of myelin sheaths with axonal preservation. Areas of focal necrosis appear beyond 15 months and are preceded by widespread demyelination. Human white matter specimens obtained post-radiation confirm early loss of oligodendrocyte progenitors and delayed onset of myelin sheath fragmentation with preserved capillaries.
This study demonstrates that long term radiation injury is associated with irreversible damage to the neural stem cell compartment in the rodent SVZ and loss of oligodendrocyte precursor cells in both rodent and human brain. Delayed onset demyelination precedes focal necrosis and is likely due to the loss of oligodendrocyte precursors and the inability of the stem cell compartment to compensate for this loss.

0 Followers
 · 
101 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Delayed toxicity after whole brain radiation therapy (WBRT) is of increasing concern in patients who survive more than one year with brain metastases from breast cancer. Radiation-related white matter toxicity is detected by magnetic resonance imaging (MRI) and has been correlated with neurocognitive dysfunction. This study assessed the risk of developing white matter changes (WMC) in breast cancer patients who underwent either WBRT plus stereotactic radiosurgery (SRS) or SRS alone. We retrospectively compared 35 patients with breast cancer brain metastases who received WBRT and SRS to 30 patients who only received SRS. All patients had evaluable imaging at a median of one year after their initial management. The development of white matter T2 prolongation as detected by T2 or FLAIR imaging was graded: grade 1 = little or no white matter T2 hyperintensity; grade 2 = limited periventricular hyperintensity; and grade 3 = diffuse white matter hyperintensity. After WBRT plus SRS, patients demonstrated a significantly higher incidence of WMC (p < 0.0001). After one year, 71.5 % of patients whose treatment included WBRT demonstrated WMC (42.9 % grade 2; 28.6 % grade 3). Only one patient receiving only SRS developed WMC. In long-term survivors of breast cancer, the risk of WMC was significantly reduced when SRS alone was used for management. Further prospective studies are necessary to determine how these findings correlate with neurocognitive toxicity. WBRT usage as initial management of limited brain disease should be replaced by SRS alone to reduce the risk of delayed white matter toxicity.
    Journal of Neuro-Oncology 12/2014; 121(3). DOI:10.1007/s11060-014-1670-4 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Radiotherapy is a mainstay of brain cancer treatment, but it causes significant complications. In this issue of Cell Stem Cell, Piao et al. (2015) derive oligodendrocyte precursors from human embryonic stem cells and show that engrafted cells replenish depleted precursor numbers, generate new myelin, and reverse behavioral defects in irradiated rats. Copyright © 2015 Elsevier Inc. All rights reserved.
    Cell Stem Cell 02/2015; 16(2):113-114. DOI:10.1016/j.stem.2015.01.010 · 22.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Für die translationale Krebsforschung sind präklinische in-vivo-Untersuchungen an Kleintieren unverzichtbar, um Erkenntnisse aus in-vitro-Zellexperimenten vor der klinischen Einführung zu validieren. Bei der Konzeption solcher Tierexperimente müssen verschiedene biologische, technische und methodische Aspekte betrachtet werden. Dieser Übersichtsartikel gibt eine umfangreiche Zusammenfassung zur Bestrahlung von Kleintieren wie Mäusen und Ratten basierend auf relevanten Publikationen dieses Forschungsgebietes. Klinische Bestrahlungsgeräte für Teletherapie und Brachtytherapie sowie dedizierte Bestrahlungsgeräte für die Forschung sind zur Bestrahlung von Kleintieren geeignet. Dies hängt jedoch wesentlich vom Tiermodell und den Forschungszielen ab. Geeignete Lösungen werden vorgestellt, welche die verfügbaren Technologien der humanen Strahlentherapie auf die präklinische Forschung mit Kleintieren übertragen. Des Weiteren werden wichtige Entscheidungshilfen für die Experimentplanung zusammengefasst, die zur Erzielung zuverlässiger, klinisch relevanter Ergebnisse zu beachten sind.
    Zeitschrift für Medizinische Physik 08/2014; DOI:10.1016/j.zemedi.2014.07.004 · 1.81 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from