Article

Clinical strategies for rationale combinations of aromatase inhibitors with novel therapies for breast cancer.

Department of Medicine, Royal Marsden Hospital, London SW3 6JJ, UK.
The Journal of Steroid Biochemistry and Molecular Biology (Impact Factor: 3.98). 01/2007; 106(1-5):180-6. DOI: 10.1016/j.jsbmb.2007.05.019
Source: PubMed

ABSTRACT Improving endocrine responsiveness and preventing the development of resistance is the goal of many current strategies that are looking to combine aromatase inhibitors with novel drugs that target various pathways in estrogen receptor (ER) positive breast cancer. Pre-clinical models of acquired resistance to aromatase inhibitors have suggested an increase in several signaling pathways including peptide growth factor signaling (EGFR, HER2) and activation of the mTOR signaling pathway. These may result in associated 'cross-talk' activation of ER-dependent gene transcription, such that dual blockade of ER together with other signaling pathways has become a logical approach to improve endocrine responsivness. Clinical strategies with aromatase inhibitors are looking to prevent activation of these pathways either through combination with the selective ER downregulator fulvestrant, or with various signal transduction inhibitors (STIs) including monoclonal antibodies (trastuzumab), small molecule tyrosine kinase inhibitors (TKIs) against EGFR or HER2 (lapatinib, gefitinib) and mTOR antagonists (temsirolimus). Early clinical data have emerged this year for some of these approaches with mixed results. This article reviews the rationale for these strategies, and discusses the lessons that need to be learnt if we are to successfully integrate these new drugs with aromatase inhibitors in the clinic.

1 Bookmark
 · 
60 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aromatase inhibitors (AIs) are an effective therapy in treating estrogen receptor-positive breast cancer. Nonetheless, a significant percentage of patients either do not respond or become resistant to AIs. Decreased dependence on ER-signaling and increased dependence on growth factor receptor signaling pathways, particularly human epidermal growth factor receptor 2 (EGFR2/HER2), have been implicated in AI resistance. However, the role of growth factor signaling remains unclear. This current study investigates the possibility that signaling either through HER2 alone or through interplay between epidermal growth factor receptor 1 (EGFR/HER1) and HER2 mediates AI resistance by increasing the tumor initiating cell (TIC) subpopulation in AI-resistant cells via regulation of stem cell markers, such as breast cancer resistance protein (BCRP). TICs and BCRP are both known to be involved in drug resistance. Results from in vitro analyses of AI-resistant versus AI-sensitive cells and HER2-versus HER2+ cells, as well as from in vivo xenograft tumors, indicate that (1) AI-resistant cells overexpress both HER2 and BCRP and exhibit increased TIC characteristics compared to AI-sensitive cells; (2) inhibition of HER2 and/or BCRP decrease TIC characteristics in letrozole-resistant cells; and (3) HER2 and its dimerization partner EGFR/HER1 are involved in the regulation of BCRP. Overall, these results suggest that reducing or eliminating the TIC subpopulation with agents that target BCRP, HER2, EGFR/HER1, and/or their downstream kinase pathways could be effective in preventing and/or treating acquired AI resistance.
    Breast Cancer Research and Treatment 08/2012; 135(3):681-92. · 4.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The majority (∼70%) of breast cancers are steroid hormone receptor (SR) positive at the time of diagnosis. Endocrine therapies that target estrogen receptor α (ERα) action (tamoxifen, toremifene, fulvestrant) or estrogen synthesis (aromatase inhibitors: letrozole, anastrozole, exemestane; or ovarian suppression) are a clinical mainstay. However, up to 50% of SR+ breast cancers exhibit de novo or acquired resistance to these clinical interventions. Mechanisms of resistance to endocrine therapies often include upregulation and/or activation of signal transduction pathways that input to cell cycle regulation. Cyclin D1, the regulatory subunit of cyclin-dependent protein kinases four and six (CDK4/6) serves as a convergence point for multiple signaling pathways. In a recent paper entitled 'Therapeutically Activating Retinoblastoma (RB): Reestablishing Cell Cycle Control in Endocrine Therapy-Resistant Breast Cancer', Thangavel et al. reported maintenance of cyclin D1 expression and RB phosphorylation in the face of ER ablation in multiple breast cancer cell line models of endocrine resistance. RB-dysfunction defined a unique gene signature that was associated with luminal B-type breast cancer and predictive of poor response to endocrine therapies. Notably, a new CDK4/6 inhibitor (PD-0332991) was capable of inducing growth arrest by a mechanism that was most consistent with cellular senescence. In this review, these findings are discussed in the context of SRs as important mediators of cell cycle progression, and the frequent loss of cell cycle checkpoint control that typifies breast cancer progression. These studies provide renewed hope of effectively stabilizing endocrine-resistant breast cancers using available complementary (to endocrine-based therapies) cytostatic agents in the form of CDK4/6 inhibitors.
    Endocrine Related Cancer 05/2011; 18(4):C19-24. · 5.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Substantial progress is being made in endocrine therapy for breast cancer. Here we review the results from recent trials, highlight key areas of current translational research, and discuss the potential for brief preoperative studies to identify molecular markers predicting outcome in the individual patient. A key challenge for translational research is to optimize endocrine therapy based on patient and tumor characteristics. A further challenge is to identify tumors with acquired or innate resistance and to develop the use of signal transduction inhibitors in combination with endocrine therapy as a means to overcome resistance. Key to the success of such approaches will be clinical trial designs that incorporate appropriate tumor selection and validation of biomarkers predicting benefit.
    Current Breast Cancer Reports 1(4):207-215.