• Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using liquid-state NMR spectroscopy we have estimated the proton-donating ability of Zn-bound water in organometallic complexes designed as models for the active site of the metalloenzyme carbonic anhydrase (CA). This ability is important for the understanding of the enzyme reaction mechanism. The desired information was obtained by (1)H and (15)N NMR at 180 K of solutions of [Tp(Ph,Me)ZnOH] [1, Tp(Ph,Me) = tris(2-methyl-4-phenylpyrazolyl)hydroborate] in CD(2)Cl(2), in the absence and presence of the proton donors (C(6)F(5))(3)BOH(2) [aquatris(pentafluorophenyl)boron] and Col-H(+) (2,4,6-trimethylpyridine-H(+)). Col-H(+) forms a strong OHN hydrogen bond with 1, where the proton is located closer to nitrogen than to oxygen. (C(6)F(5))(3)BOH(2), which exhibits a pK(a) value of 1 in water, also forms a strong hydrogen bond with 1, where the proton is shifted slightly across the hydrogen-bond center toward the Zn-bound oxygen. Finally, a complex between Col and (C(6)F(5))(3)BOH(2) was identified, exhibiting a zwitterionic OHN hydrogen bond, where H is entirely shifted to nitrogen. The comparison with complexes of Col with carboxylic acids studied previously suggests that, surprisingly, the Zn-bound water exhibits in an aprotic environment a similar proton-donating ability as a carboxylic acid characterized in water by a pK(a) of 2.2 ± 0.6. This value is much smaller than the value of 9 found for [Zn(OH(2))(6)](2+) in water and those between 5 and 8 reported for different forms of CA. Implications for the biological function of CA are discussed.
    Journal of the American Chemical Society 06/2011; 133(29):11331-8. · 10.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intramolecular and intermolecular hydrogen bonding in electronic excited states of calixarene building blocks bis(2-hydroxyphenyl)methane (2HDPM) monomer and hydrogen-bonded 2HDPM-H(2)O complex were studied theoretically using the time-dependent density functional theory (TDDFT). Twenty-four stable conformations (12 pairs of enantiomers) of 2HDPM monomer have been found in the ground state. From the calculation results, the conformations 1a and 1b which both have an intramolecular hydrogen bond are the most stable ones. The infrared spectra of 2HDPM monomer and 2HDPM-H(2)O complex in ground state and S(1) state were calculated. The stretching vibrational absorption band of O(2) - H(3) group in the monomer and complex disappeared in the S(1) state. At the same time, a new strong absorption band appeared at the C=O stretching region. From the calculation of bond lengths, it indicates that the O(2) - H(3) bond is significantly lengthened in the S(1) state. However, the C(1) - O(2) bond is drastically shortened upon electronic excitation to the S(1) state and has the characteristics of C=O band. Furthermore, the intramolecular hydrogen bond O(2) - H(3) · · · O(4) of the 2HDPM monomer and the intermolecular hydrogen bonds O(2) - H(3) · · · O(7) and O(7) - H(9) · · · O(4) of 2HDPM-H(2)O complex are all shortened and strengthened in the S(1) state.
    Journal of Molecular Modeling 01/2013; · 1.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pyridoxal 5'-phosphate (PLP; vitamin B(6))-catalyzed reactions have been well studied, both on enzymes and in solution, due to the variety of important reactions this cofactor catalyzes in nitrogen metabolism. Three functional groups are central to PLP catalysis: the C4' aldehyde, the O3' phenol, and the N1 pyridine nitrogen. In the literature, the pyridine nitrogen has traditionally been assumed to be protonated in enzyme active sites, with the protonated pyridine ring providing resonance stabilization of carbanionic intermediates. This assumption is certainly correct for some PLP enzymes, but the structures of other active sites are incompatible with protonation of N1, and, consequently, these enzymes are expected to use PLP in the N1-unprotonated form. For example, aspartate aminotransferase protonates the pyridine nitrogen for catalysis of transamination, while both alanine racemase and O-acetylserine sulfhydrylase are expected to maintain N1 in the unprotonated, formally neutral state for catalysis of racemization and β-elimination. Herein, kinetic results for these three enzymes reconstituted with 1-deazapyridoxal 5'-phosphate, an isosteric analogue of PLP lacking the pyridine nitrogen, are compared to those for the PLP enzyme forms. They demonstrate that the pyridine nitrogen is vital to the 1,3-prototropic shift central to transamination, but not to reactions catalyzed by alanine racemase or O-acetylserine sulfhydrylase. Not all PLP enzymes require the electrophilicity of a protonated pyridine ring to enable formation of carbanionic intermediates. It is proposed that modulation of cofactor electrophilicity plays a central role in controlling reaction specificity in PLP enzymes.
    Journal of the American Chemical Society 08/2011; 133(37):14823-30. · 10.68 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014