4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.

Department of Basic Medical Sciences, Center for Paralysis Research, Purdue University, 408 South University Street, West Lafayette, IN 47907, USA.
Neuroscience (Impact Factor: 3.12). 09/2007; 148(1):44-52. DOI:10.1016/j.neuroscience.2007.05.039
Source: PubMed

ABSTRACT 4-Aminopyridine (4-AP), a potassium channel blocker, is capable of restoring conduction in the injured spinal cord. However, the maximal tolerated level of 4-AP in humans is 100 times lower than the optimal dose in in vitro animal studies due to its substantially negative side effects. As an initial step toward the goal of identifying alternative potassium channel blockers with a similar ability of enhancing conduction and with fewer side effects, we have synthesized structurally distinct pyridine-based blockers. Using isolated guinea-pig spinal cord white matter and a double sucrose gap recording device, we have found three pyridine derivatives, N-(4-pyridyl)-methyl carbamate (100 microM), N-(4-pyridyl)-ethyl carbamate (100 microM), and N-(4-pyridyl)-tertbutyl (10 microM) can significantly enhance conduction in spinal cord white matter following stretch. Similar to 4-AP, the derivatives did not preferentially enhance conduction based on axonal caliber. Unlike 4-AP, the derivatives did not change the overall electrical responsiveness of axons to multiple stimuli, indicating the axons recruited by the derivatives conducted in a manner similar to healthy axons. These results demonstrate the ability of novel constructs to serve as an alternative to 4-AP for the purpose of reversing conduction deficits.

0 0
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Recent studies have reported that delayed-rectifier Kv channels regulate apoptosis in the nervous system. Herein, we investigated changes in the expression of the delayed-rectifier Kv channels Kv1.2, Kv2.1, and Kv3.1 after acute spinal cord injury (SCI) in rats. We performed RT-PCR analysis and found an increase in the level of Kv2.1 mRNA after SCI but no significant changes in the levels of Kv1.2 and Kv3.1 mRNA. Western blot analysis revealed that Kv2.1 protein levels rapidly decreased and then dramatically increased from 1 day, whereas Kv3.1b protein levels gradually and sharply decreased at 5 days. Kv1.2 protein levels did not change significantly. In addition, Kv2.1 clusters were disrupted in the plasma membranes of motor neurons after SCI. Interestingly, the expressional changes and translocation of Kv2.1 were consistent with the apoptotic changes on day 1. Therefore, these results suggest that Kv2.1 channels probably contribute to neuronal cell responses to SCI.
    BMB reports 11/2010; 43(11):756-60. · 1.63 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Crush to the mammalian spinal cord leads to primary mechanical damage followed by a series of secondary biomolecular events. The chronic outcomes of spinal cord injuries have been well detailed in multiple previous studies. However, the initial mechanism by which constant displacement injury induces conduction block is still unclear. We therefore investigated the anatomical factors that may directly contribute to electrophysiological deficiencies in crushed cord. Ventral white matter strips from adult guinea pig spinal cord were compressed 80%, either briefly or continuously for 30 min. Immunofluorescence imaging and coherent anti-Stokes Raman spectroscopy (CARS) were used to visualize key pathological changes to ion channels and myelin. Compression caused electrophysiological deficits, including compound action potential (CAP) decline that was injury-duration-dependent. Compression further induced myelin retraction at the nodes of Ranvier. This demyelination phenomenon exposed a subclass of voltage-gated potassium channels (K(v)1.2). Application of a potassium channel blocker, 4-aminopyridine (4-AP), restored the CAP to near pre-injury levels. To further investigate the myelin detachment phenomenon, we constructed a three-dimensional finite element model (FEM) of the axon and surrounding myelin. We found that the von Mises stress was highly concentrated at the paranodal junction. Thus, the mechanism of myelin retraction may be associated with stress concentrations that cause debonding at the axoglial interface. In conclusion, our findings implicate myelin disruption and potassium channel pathophysiology as the culprits causing compression-mediated conduction block. This result highlights a potential therapeutic target for compressive spinal cord injuries.
    Journal of neurotrauma 04/2010; 27(6):1109-20. · 4.25 Impact Factor
  • [show abstract] [hide abstract]
    ABSTRACT: Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction.
    Neuroscience Bulletin 02/2011; 27(1):36-44. · 1.37 Impact Factor


Available from