4-Aminopyridine derivatives enhance impulse conduction in guinea-pig spinal cord following traumatic injury.

Department of Basic Medical Sciences, Center for Paralysis Research, Purdue University, 408 South University Street, West Lafayette, IN 47907, USA.
Neuroscience (Impact Factor: 3.12). 09/2007; 148(1):44-52. DOI: 10.1016/j.neuroscience.2007.05.039
Source: PubMed

ABSTRACT 4-Aminopyridine (4-AP), a potassium channel blocker, is capable of restoring conduction in the injured spinal cord. However, the maximal tolerated level of 4-AP in humans is 100 times lower than the optimal dose in in vitro animal studies due to its substantially negative side effects. As an initial step toward the goal of identifying alternative potassium channel blockers with a similar ability of enhancing conduction and with fewer side effects, we have synthesized structurally distinct pyridine-based blockers. Using isolated guinea-pig spinal cord white matter and a double sucrose gap recording device, we have found three pyridine derivatives, N-(4-pyridyl)-methyl carbamate (100 microM), N-(4-pyridyl)-ethyl carbamate (100 microM), and N-(4-pyridyl)-tertbutyl (10 microM) can significantly enhance conduction in spinal cord white matter following stretch. Similar to 4-AP, the derivatives did not preferentially enhance conduction based on axonal caliber. Unlike 4-AP, the derivatives did not change the overall electrical responsiveness of axons to multiple stimuli, indicating the axons recruited by the derivatives conducted in a manner similar to healthy axons. These results demonstrate the ability of novel constructs to serve as an alternative to 4-AP for the purpose of reversing conduction deficits.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Most axons in the vertebral central nervous system are myelinated by oligodendrocytes. Myelin protects and insulates neuronal processes, enabling the fast, saltatory conduction unique to myelinated axons. Myelin disruption resulting from trauma and biochemical reaction is a common pathological event in spinal cord injury and chronic neurodegenerative diseases. Myelin damage-induced axonal conduction block is considered to be a significant contributor to the devastating neurological deficits resulting from trauma and illness. Potassium channels are believed to play an important role in axonal conduction failure in spinal cord injury and multiple sclerosis. Myelin damage has been shown to unmask potassium channels, creating aberrant potassium currents that inhibit conduction. Potassium channel blockade reduces this ionic leakage and improves conduction. The present review was mainly focused on the development of this technique of restoring axonal conduction and neurological function of demyelinated axons. The drug 4-aminopyridine has recently shown clinical success in treating multiple sclerosis symptoms. Further translational research has also identified several novel potassium channel blockers that may prove effective in restoring axonal conduction.
    Neuroscience Bulletin 02/2011; 27(1):36-44. · 1.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have reported that delayed-rectifier Kv channels regulate apoptosis in the nervous system. Herein, we investigated changes in the expression of the delayed-rectifier Kv channels Kv1.2, Kv2.1, and Kv3.1 after acute spinal cord injury (SCI) in rats. We performed RT-PCR analysis and found an increase in the level of Kv2.1 mRNA after SCI but no significant changes in the levels of Kv1.2 and Kv3.1 mRNA. Western blot analysis revealed that Kv2.1 protein levels rapidly decreased and then dramatically increased from 1 day, whereas Kv3.1b protein levels gradually and sharply decreased at 5 days. Kv1.2 protein levels did not change significantly. In addition, Kv2.1 clusters were disrupted in the plasma membranes of motor neurons after SCI. Interestingly, the expressional changes and translocation of Kv2.1 were consistent with the apoptotic changes on day 1. Therefore, these results suggest that Kv2.1 channels probably contribute to neuronal cell responses to SCI.
    BMB reports 11/2010; 43(11):756-60. · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The activation of a delayed secondary cascade of unsatisfactory cellular and molecular responses after a primary mechanical insult to the spinal cord causes the progressive degeneration of this structure. Disturbance of ionic homeostasis is part of the secondary injury process and plays an integral role in the early stage of spinal cord injury (SCI). The secondary pathology of SCI is complex and involves disturbance of the homeostasis of K(+) , Na(+) , and Ca(2+) . The effect of ion channel blockers on chronic SCI has also been proved. In this Mini-Review, we provide a comprehensive summary of the effects of ion channel blockers on the natural responses after SCI. Combination therapy is based on the roles of ions and disturbance of their homeostasis in SCI. The effects of ion channel blockers suggest that they have potential in the treatment of SCI, although the complexity of their effects shows that further knowledge is needed before they can be applied clinically.
    Journal of Neuroscience Research 03/2011; 89(6):791-801. · 2.97 Impact Factor

Full-text (2 Sources)

Available from
Aug 11, 2014